
� 275

ARTICLE

MARMOT
A Deep Learning Framework for Constructing Multimodal Representations
for Vision-and-Language Tasks

Patrick Y. Wu
Department of Political Science, University of Michigan

Walter R. Mebane
Department of Political Science and Department of Statistics, University of
Michigan

Abstract
Political activity on social media presents a data-rich window into political
behavior, but the vast amount of data means that almost all content analyses
of social media require a data labeling step. However, most automated
machine classif ication methods ignore the multimodality of posted content,
focusing either on text or images. State-of-the-art vision-and-language
models are unusable for most political science research: they require all
observations to have both image and text and require computationally
expensive pretraining. This paper proposes a novel vision-and-language
framework called multimodal representations using modality translation
(MARMOT). MARMOT presents two methodological contributions: it
can construct representations for observations missing image or text,
and it replaces the computationally expensive pretraining with modality
translation. MARMOT outperforms an ensemble text-only classif ier in 19
of 20 categories in multilabel classif ications of tweets reporting election
incidents during the 2016 U.S. general election. Moreover, MARMOT shows
significant improvements over the results of benchmark multimodal models
on the Hateful Memes dataset, improving the best result set by VisualBERT
in terms of accuracy from 0.6473 to 0.6760 and area under the receiver
operating characteristic curve (AUC) from 0.7141 to 0.7530. The GitHub
repository for MARMOT can be found at github.com/patrickywu/MARMOT.

Keywords: multimodal, natural language processing, computer vision,
social media, deep learning, images as data, text as data

COMPUTATIONAL COMMUNICATION RESEARCH 4.1 (2022) 275-322
https://doi.org/10.5117/CCR2022.1.008.WU

© Patrick Y. Wu & Walter R. Mebane, Jr.

276 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

Introduction

This paper introduces a novel deep learning framework for constructing
representations for vision-and-language tasks usable for political science and
communications research of social media. This framework seeks to improve
the classif ication or labeling step of research on social media content, which
usually ignores either the image or the post’s text. For example, Barberá
et al., 2019 use latent Dirichlet allocation (Blei et al., 2003) to cluster text
of tweets by topic. Mebane et al., 2018 use active learning with support
vector machines and an ensemble classif ier to sort the text of tweets into
categories and subcategories. J. Pan and Siegel, 2020 use a crowdsourcing
approach to label the text of tweets into specif ic categories and sentiment.
Casas and Webb Williams, 2019 also use a crowdsourcing approach to label
images from tweets into the emotions they were supposed to invoke. All
such examples label, classify, or cluster posts using one modality.

A unimodal focus can potentially create biases in the processed data,
leading to misleading inferences in the downstream analysis of the data.
Both image and text must be considered to reduce these potential biases. For
example, consider the following tweet in Figure 1. If we were interested in
classifying tweets as reports of being able to vote with no reported problems,
this tweet would f it those criteria: the text indicates that the person finished
something, along with the vote hashtag, and the image of the “I Voted”
sticker indicates that the person voted. Thus, the combination of the text
and the image indicates that the person could successfully vote, meeting
the labeling criteria. However, if another tweet contained a similar image
but the text indicated that they encountered problems voting, such a tweet
would not f it the labeling criteria. Only by jointly considering the image
and text can we definitively conclude that the person in Figure 1 was able
to vote with no reported problems.

An approach to machine classif ication of multimodal posts would be
to jointly map image-text combinations to d-dimensional vectors, an ap-
proach known as representation learning. Representation learning methods
automatically learn the mapping of observations to vector representations.
Popular examples of representation learning methods include word2vec
(Mikolov et al., 2013), GloVe (Pennington et al., 2014), and doc2vec (Le &
Mikolov, 2014).

Representation learning methods exist that produce joint representations
of images and text. Some of these models, known as late fusion approaches,
use separate models for image and text and then combine the outputs of
these two models (Liu et al., 2018). These models usually allow for missing

WU & MEBANE� 277

MARMOT

modalities among observations but fail to effectively learn patterns between
images and text. Other models, known as early fusion approaches, input both
image and text features into a single model. Early fusion models eff iciently
learn patterns between the image and text directly (Liu et al., 2018). Most
state-of-the-art approaches use an early fusion approach.

State-of-the-art approaches such as ViLBERT (Lu et al., 2019) and
VisualBERT (Li et al., 2019) are not well-suited for political science and
communications research. Early fusion approaches usually require all
observations have image and text, which is almost always not true for social
media data that social scientists are interested in—posts may contain text,
image(s), or some combination of both. Most state-of-the-art early fusion
models, most of which are based on transformers (Vaswani et al., 2017), are
also pretrained on image annotation datasets, such as Microsoft COCO (Lin
et al., 2014). These image annotation datasets contain images with associated

Figure 1 “Done and done #vote”

278 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

captions. This pretraining serves two purposes. First, it adapts the underlying
transformers-based pretrained language model, originally trained to accept
text input only, to accept as input both text and image features. Second,
it learns the relationship between the text and image. However, because
most real-world multimodal observations that need to be classif ied are
not simply a caption describing what is happening in an image, additional
pretraining is needed using the data of interest in order for the model to
adapt to the target domain. Pretraining is also computationally expensive,
requiring computational resources not available to most social scientists.

To this end, we propose multimodal representations from modality
translation, or MARMOT, a novel transformers-based architecture that
produces multimodal representations. MARMOT aims to solve the two
issues that make state-of-the-art multimodal models unusable for political
science and communications research. First, we use attention masks to
handle missing modalities explicitly. Attention masks, typically used in
machine translation and question-answering tasks, are used to prevent
the self-attention mechanism of the transformer from attending to missing
modalities, meaning that representations can be constructed even for
observations missing modalities. Second, to capture the spirit of pretrain-
ing while avoiding expensive computational costs, we propose modality
translation. Instead of pretraining our model on an image annotation
dataset, we directly generate captions for each observation containing an
image using a pretrained image captioner. To avoid having to adapt the
underlying transformers-based pretrained language model to accept both
text and image features, we use a transformer decoder initialized with
pretrained BERT weights (Devlin et al., 2019). The image captions, derived
from a pretrained image captioner such as self-critical sequence training
(Rennie et al., 2016), are inputted into the BERT decoder, and the image
features, derived from a pretrained image network such as ResNet-152 (He
et al., 2015), are inputted at the encoder-decoder attention layer. The BERT
decoder constructs what we call the translated image. Modality translation
maps image features to the relevant parts of the text feature space. The last
step jointly inputs the text, image captions, and translated image features
into a transformer encoder initialized with pretrained BERT weights. The
output of the transformer encoder is the joint image-text representation.

MARMOT makes two methodological contributions. First, it introduces
modality translation. Modality translation replaces the computationally
expensive pretraining process and allows the model to learn directly from
the data of interest. Second, the model can calculate representations even
for observations missing an image or text.

WU & MEBANE� 279

MARMOT

We apply MARMOT to data classif ication tasks on two datasets. The
f irst is a dataset of tweets reporting election incidents during the 2016 U.S.
general election (Mebane et al., 2018). All tweets contain text but some
tweets contain an image. MARMOT outperforms the text-only classif ier
used in Mebane et al., 2018 on 19 of 20 categories in multilabel classif ications
of tweets (and equals the performance in the last category). The second is
the Hateful Memes dataset, recently released by Facebook Research to test
multimodal models (Kiela et al., 2020). The goal is to classify each meme as
hateful or not. Detecting hateful speech and memes is of interest to both
computer science (e.g., Davidson et al., 2017; MacAvaney et al., 2019) and
political science (e.g., Siegel & Badaan, 2020; Siegel et al., 2021). This dataset
also contains text and an image for each observation, making MARMOT
comparable to other state-of-the-art multimodal models. MARMOT im-
proves upon the results set by benchmark state-of-the-art multimodal
models on this dataset, even outperforming pretrained multimodal models.
It improves the best benchmark result set by VisualBERT (Li et al., 2019)
pretrained on MS COCO in terms of accuracy from 0.6473 to 0.6760 and in
terms of area under the receiver operating characteristic curve (AUC) from
0.7141 to 0.7530. The model f inished in the top 1% of all participants in the
Hateful Memes challenge.

The paper proceeds as follows. First, we review the literature on mul-
timodal models. We then detail the architecture of MARMOT. We apply
MARMOT to a dataset of election incidents reported on Twitter during the
2016 U.S. general election and the Hateful Memes dataset. We then make
concluding remarks and discuss future directions of the project.

Approaches to Classifying Multimodal Data

A modality is defined as some item that provides information to a reader or
viewer, such as text, audio, images, or video. It is also common for multiple
modalities to exist together, providing readers with the task of jointly con-
sidering the modalities to understand the information conveyed (Mogadala,
2015). Our paper considers image and text, but other works have focused
on other combinations of modalities as well, such as text and video (see,
e.g., Sun et al., 2019).

The goal is to develop a model usable for social scientists labeling data that
consist of both images and text. That means that the model must work with
small datasets, it must be able to run with modest computational resources,
and it must handle data that may have observations missing modalities. We

280 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

look at the previous models and works that we leverage within MARMOT
to develop a model that satisf ies these requirements.

Late Fusion vs. Early Fusion Models
Early works on multimodal learning largely focused on late fusion ap-
proaches, a set of multimodal learning models where individual modalities
are inputted into separate models. The outputs of these separate models
are then combined through a policy. Initial works used major features of
the images and bag-of-words approaches (Tian et al., 2013). Later works
used deep learning methods such as deep convolutional neural networks
(Zahavy et al., 2016). Social science methodologists have also developed late
fusion approaches. Zhang and Pan, 2019 use a late fusion approach with a
convolutional neural network for images and a recurrent neural network for
text in order to identify Weibo posts that discuss offline collective action.
The main advantage of late fusion approaches is that observations can be
missing modalities: one could use the representation generated by the
text model alone, the representation from the image model alone, or the
combined representation from the two models. Nevertheless, because there
are separate models for each modality, such an approach cannot learn
interactions or patterns across the modalities in a meaningful fashion.

Early fusion approaches, on the other hand, create joint representa-
tions of images and text. A single model is used to learn within and across
both modalities, which is its key advantage. It assumes, however, that one
model is suitable for both modalities. W. Wang et al., 2019 note that early
fusion multimodal networks often perform poorly because using a single
optimization strategy is almost always suboptimal for a model that deals
with multiple modalities.

Notwithstanding these issues, early fusion approaches have quickly
risen in popularity with the development of the transformer and pretrained
language models such as BERT. Some of these self-supervised architectures
include VisualBERT (Li et al., 2019), Visual-Linguistic BERT (VL-BERT, Su
et al., 2019), Vision and Language BERT (ViLBERT, Lu et al., 2019), Learning
Cross-Modality Encoder Representations from Transformers (LXMERT, Tan
and Bansal, 2019), and Multimodal Bitransformers (MMBT, Kiela et al., 2019).

Attention and Transformers
The transformer consists of four components: the attention mechanism,
layer normalization, residual connections, and the feedforward layer. To
support understanding the transformers that MARMOT is based on and the
attention mask feature of MARMOT, we review the attention mechanism

WU & MEBANE� 281

MARMOT

and transformers here; brief introductions to layer normalization, residual
connections, and the feedforward layer can be found in the Supplemental
Information. More technical introductions about attention and transformers
can be found at Rush, 2018 and Bloem, 2019.

Attention
Transformers use attention (Bahdanau et al., 2014) in the self-attention layer
and the encoder-decoder attention layer. Rather than directly def ining
attention, we f irst turn to the more intuitive self-attention. Attention is a
generalization of self-attention.

Self-attention is a sequence-to-sequence operation, meaning that a
sequence of vectors is inputted and a sequence of vectors is outputted.
Self-attention relates all positions of a sequence with one another in order
to compute a new representation of the same sequence. To make this idea
more concrete, we start with a simplif ied version of self-attention. Denote
the input vectors as x1, x2,, xN and denote the output vectors, the new
representation of the sequence of vectors x, as z1, z2,, zN. We can assume
that all vectors x and z have dimension k. To calculate zi, simplif ied self-
attention simply takes a weighted sum over all input vectors xj, for j ϵ {1, ..., N}:

​​z​ i​​ = ​∑ j​​ ​w​ ij​​ ​x​ j​​​​� (1)

The weight wij is not a learned parameter, but is calculated from a similarity
function over xi and xj, such as the dot product: ​​w​ ij​ ′ ​ = ​x​ i​ T​ ​x​ j​​​. Because the dot
product calculates a weight that is between negative and positive inf inity,
we apply a softmax function to map the weights ​​w​ ij​ ′ ​​ to [0 , 1] and to ensure
they sum to 1 over the entire sequence:

​​w​ ij​​ = ​  exp​(​​ ​w​ ij​ ′ ​​)​​ _ ​∑ l​ ​​ exp​(​​ ​w​ il​ ′ ​​)​​​​� (2)

wij are known as the attention weights because they indicate how much
attention the ith output vector zi should pay to the jth input vector xj. The
core goal of self-attention is propagating information between input vectors.

There are a few more modifications to give self-attention more represen-
tational power. Notice that each input vector xi is used in three ways: (1) it is
compared to every other input vector xj, j ϵ {1, ... N} to calculate the weights
for output zi; (2) it is compared to every other input vector to calculate the
weights for all other outputs zj, j ϵ {1, ..., i - 1, i + 1, ..., N}; (3) and it is used as a
part of the weighted sum in equation 1 to compute each output vector. These
roles are called the query, the key, and the value, respectively. To allow the

282 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

query, key, and value to differ, we can define them as qi = Wqxi, ki = Wkxi and
vi = Wvxi, respectively, where Wq, Wk, and Wv are k × k weight matrices. To give
even more representational power, we can use h query, key, and value weight
matrices, yielding h separate sets of output vectors that can be combined
via a linear transformation. This is known as multiheaded attention.

The dot product is rarely used as the similarity function to calculate the
weights because the softmax function is sensitive to large input values,
affecting gradients in backpropagation. Because the average value of the
dot product grows with k, we divide the dot product by ​​√ 

_
 k ​​, called the scaled

dot product.
The following three equations reflect the above discussion and def ine

self-attention:

​​w​ ij​ ′ ​ = ​q​ i​ T​ ​k​ j​​​� (3)

​​​w​ ij​​ = soft max​(​​ ​w​ ij​ ′ ​​)​​​​� (4)

​​z​ i​​ = ​∑ j​​ ​w​ ij​​ ​v​ j​​​​� (5)

Notice that self-attention is permutation invariant: nothing about Equa-
tions 3 to 5 takes into account the order of the vectors in the sequence x. The
attention weights derived for the sentence “Trump beat Clinton in the 2016
U.S. general election” would be the same as the attention weights derived
for the sentence “Clinton beat Trump in the 2016 U.S. general election,” even
though the word order reveals a key distinction in the two sentences. We
use positional embeddings to make the two sentences distinct. Positional
embeddings map the word position to either learnable embeddings or f ixed
embeddings. These positional embeddings are then added to the input.
Absolute position embeddings, where a unique embedding is learned for each
position, are the most popular positional embedding choice. Fixed sinusoidal
positional embeddings also work well in many contexts (Vaswani et al., 2017).

Generalized attention resembles self-attention in every manner except
that the queries, keys, and values are not all based on the same sequence
of vectors x. The encoder-decoder attention layer def ines the query as qi =
Wqxi, the key as ki = Wkyi, and the value as vi = Wvyi, where xi comes from a
sequence of vectors x and yi comes from a separate sequence of vectors y.
Other than this, Equations 3, 4, and 5 are still used to calculate the outputted
sequence(s) of vectors.

WU & MEBANE� 283

MARMOT

Transformers
Attention mechanisms were usually paired with recurrent neural networks
(RNN), such as long short-term memory models (Chang & Masterson, 2020;
Hochreiter & Schmidhuber, 1997; Xu et al., 2015). However, Vaswani et al.,
2017 argued that the attention mechanism alone was enough to learn
dependencies between words. The architecture built around the attention
mechanism is called the transformer. Because the transformer only uses
attention, it entirely dispenses with recurrence and more effectively models
long-term dependencies between words within the text. In an RNN, words
that appear near the beginning of the document may be “forgotten” by the
end of the document. In (self-)attention, every word is related to every other
word, regardless of the distance between words.

The transformer consists of an encoder and a decoder. See Figure 2 for
an overview of the transformer architecture. Transformers were initially
designed for machine translation tasks, where word embeddings x of one
language were inputted into the transformer encoder, and the word
embeddings α of the other language were inputted into the decoder. The
output vectors of the transformer encoder y would be inputted into the
encoder-decoder attention layer of the transformer decoder as the keys
and values, while the queries came from the self-attention layer of the
transformer decoder.

Figure 2 The transformer architecture (Vaswani et al., 2017). The outputs of the trans-
former encoder are inputted at the encoder-decoder attention layer of the transformer
decoder as the keys and values, while the queries comes from the self-attention layer
in the transformer decoder. The plus sign with a circle around it indicates a residual
connection.

284 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

Many language models, such as BERT, exclusively use the transformer
encoder. The transformer encoder is illustrated in the upper half of Figure
2. The transformer encoder consists of a self-attention layer, followed by
layer normalization, a feedforward layer where the same feedforward neural
network is applied separately to each input, and one last layer normalization;
there are residual connections around the self-attention layer and the
feedforward layer.

The transformer decoder, illustrated in the bottom half of Figure 2, exactly
resembles the encoder, except for an additional encoder-decoder attention
layer and an additional layer normalization and residual connection. The
transformer decoder’s encoder-decoder attention layer requires the keys and
values to come from a separate source, while the output of the self-attention
layer in the transformer decoder becomes the queries.

Notice that the output of the transformer encoder (decoder) can be
inputted into another transformer encoder (decoder). This is known as
stacking transformer blocks. Most modern architectures stack multiple
transformer blocks.

Training Early Fusion Models

Transfer Learning
Deep learning models typically require very large datasets. Thus, one of the
principal barriers to using social science data with deep learning methods
is labeled data availability. Even if data are readily available, such as social
media data, it is still costly to manually annotate the data (Webb Williams
et al., 2020). Transfer learning allows researchers to use state-of-the-art deep
learning methods with smaller datasets. A formal def inition of transfer
learning is given in S. J. Pan and Yang, 2010.

Informally, transfer learning takes a model trained on a source domain
and uses that model to improve the learning of a target predictive function
in a separate target domain. Transfer learning typically has two steps:
pretraining and f inetuning. During pretraining, a model is trained to solve
general tasks over a large, general dataset. For example, ResNet (He et al.,
2015) is a deep convolutional neural network trained on ImageNet (Deng et
al., 2009), a dataset of 14 million images with each image belonging to one
of 21,841 classes. We train the pretrained model with our data of interest
during finetuning to learn specif ic annotation tasks instead of training a
model from scratch. Using the pretrained model as the starting point allows
us to use deep learning methods on much smaller datasets. This approach
is illustrated in Figure 3. Intuitively, transfer learning works because the

WU & MEBANE� 285

MARMOT

model learns general concepts during pretraining. For example, ResNet
learns shapes, edges, colors, etc., which are visual concepts not exclusive
to the images it was originally trained on.

Transfer learning has been most successfully used to pretrain image
models, but natural language processing has also recently used the transfer
learning paradigm. Pretrained transformers-based language models learn
general linguistic concepts such as word order and word similarities; these
models are then f inetuned for specif ic downstream tasks (Terechshenko
et al., 2021). The most popular of these pretrained language models is
bidirectional encoder representations from transformers, or BERT (Devlin
et al., 2019). BERT follows the transfer learning paradigm described in the
previous section and consists of two steps: pretraining and f inetuning.
First, special tokens are appended to the inputs. A [CLS] token is appended
to the beginning of the sentence, while [SEP] is appended at the end of a
sentence. The corresponding output vector for [CLS] becomes the sentence
or document embedding. [SEP] is used to separate two sentences if two
sentences are inputted together into BERT. BERT is pretrained on two tasks
during pretraining: the masked language model (MLM) and next sentence
prediction (NSP). Details about these pretraining tasks can be found in the
Supplemental Information. BERT is pretrained on BooksCorpus (800 million
words) and English Wikipedia (2,500 million words).

Figure 3 An illustration of the pretraining-finetuning pipeline classifying images of bees
and ants, found in Chilamkurthy (2017). Even though the training dataset only contains
120 images of bees and ants, the finetuned model is able to correctly classify images of
bees and ants with 96% accuracy.

286 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

Beyond using the [SEP] token between two sentences, BERT also uses
token type embeddings in order to distinguish the f irst and second sen-
tences. Two token type embeddings are learned: t1 and t2. t1 is added to word
embeddings that come from the f irst sentence while t2 is added to word
embeddings that come from the second sentence. Positional embeddings,
previously discussed in the context of attention, are also used. See Figure
4 for an overview of a BERT transformer encoder block.

Pretraining BERT in this fashion, with no labeled dataset but instead
using the MLM and NSP pretraining tasks, allows us to train a model that
“understands language” in a general way. After BERT is pretrained, we
can f inetune the pretrained weights on a downstream task. Because of
the transformer encoder’s f lexibility to model complexities in language,
the parallelizability of transformers, and the ability to capture long-range
dependencies between words, almost all state-of-the-art benchmark scores
for natural language processing tasks are set by transformer-based pretrained
language models.

Pretraining Tasks for Early Fusion Multimodal Models
Because of the success of the transfer learning paradigm in computer vision
and natural language processing, it is natural to develop a similar approach
for multimodal models. But it is conceptually more diff icult to define what
“general” means in the context of multimodal data. Most state-of-the-art
multimodal models are pretrained using image annotation datasets, such
as Microsoft COCO (Lin et al., 2014) or Conceptual Captions (Sharma et
al., 2018). Each observation in these datasets contains an image and one or
several associated captions in English. General pretraining tasks similar to
MLM and NSP used to pretrain BERT are used to pretrain the multimodal

Figure 4 The architecture of the first BERT block (Devlin et al., 2019). Subsequent BERT
blocks do not use position embeddings or token type embeddings. It exactly resembles the
transformer encoder, except that token type embeddings and positional embeddings are
learned and added to the input. The token type embeddings t indicate which sentence the
embedding comes from; the position embeddings p take into account word order.

WU & MEBANE� 287

MARMOT

models. For example, VisualBERT uses two pretraining tasks: a masked
language modeling with the image, where specif ic tokens of the text must
be predicted using the surrounding text and the image, and sentence-image
prediction, where the model must predict if a caption actually corresponds
with the image or not (Li et al., 2019).

Pretraining multimodal models with image captioning datasets,
however, presents a few issues. First, the relationship between an image
and its caption is generally not the image-text relationship in real-world
observations that use image and text. For example, the text of multimodal
social media posts is generally not simply describing what is happening or
what objects are in an image. The text and the image modalities extend or
modify the overall message the post is attempting to deliver. Singh et al.,
2020 f ind that many of these pretraining tasks do not improve the model’s
performance. They f ind that pretraining on data closer to the domain of
the downstream task rather than pretraining on image captioning datasets
typically yields better performance. However, such experimentation with
different pretraining datasets requires computational resources unavailable
to most researchers.

Moreover, even without experimentation, these pretraining tasks are
computationally expensive to complete, often requiring the use of several
GPUs. Even when pretrained models are available to be downloaded, ad-
ditional pretraining on the data for the task of interest is required because it
allows a model to adapt to a new target domain. State-of-the-art multimodal
models are also not developed to accommodate missing modalities. Many
models cannot be used with datasets where observations are missing a
modality. Others randomly initialize image or text features for observations
missing an image or text, respectively.

MARMOT Details

Figure 5 shows an overview of the MARMOT architecture. It contains four
main components, further described in more detail below: the pretrained
image model, the pretrained image captioner, modality translation, and
the pretrained language model. The model is simple, and both train-
ing and inference can be accomplished using minimal computational
resources.1 The Supplemental Information details what hyperparameters
need to be selected, learning rate schedulers, optimizers, and training
strategies.

288 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

Pretrained Image Model
The f irst step involves inputting the image into a pretrained image
model, such as ResNet (He et al., 2015), Inception v3 (Szegedy et al., 2015),
or MobileNet v2 (Sandler et al., 2018). In our applications, we use ResNet-50
pretrained using the VirTex approach (Desai & Johnson, 2021). The VirTex ap-
proach pretrains a deep convolutional neural network using image captions
instead of labeled images. The Supplemental Information contains more
information about the VirTex pretraining approach. We scale down (or up)
an arbitrary image ​​x​ img​​ ∈ ​ℝ​​ 3×​H​ 0​​×​W​ 0​​​​ to ​​ℝ​​ 3×224×224​​, and then use ResNet-50
pretrained using VirTex to generate a lower resolution activation map ​z ∈ ​
ℝ​​ 2048×7×7​​. Any pretrained image model will work for this step, but exact
dimensions may differ.

Pretrained Image Captioner
At the same time, we generate an image caption for every image in our
data. We use self-critical sequence training (SCST) to generate an image

Figure 5 An overview of the MARMOT architecture. MARMOT uses a pretrained image
model to extract image features from the input image. The model flattens these image
features and passes them into the encoder-decoder layer of the transformer decoder.
Image captions are generated using a pretrained image captioner. During modality
translation, the image captions are the input into the BERT decoder. At the encoder-de-
coder attention layer of the BERT decoder, the image captions attend to the image. The
output of the BERT decoder is called the “translated” image. This “translated” image is
then jointly inputted with the text, image captions, and the [CLS] token into the BERT
encoder. The joint representation is either the first outputted vector corresponding to
the [CLS] token (in black) or the average of the rest of the output vectors (in gray).

WU & MEBANE� 289

MARMOT

caption (or multiple image captions) for each image (Rennie et al., 2016),
although any pretrained image captioner will suff ice.2 Generally, multiple
captions are used because, during inference, pretrained image captioners
may produce different captions that focus on different aspects of the image.

Modality Translation
Modality translation captures the spirit of pretraining used in other multi-
modal models such as VisualBERT (Li et al., 2019) without having to further
pretrain the model on an image annotations dataset or the data for our task
of interest. It also means not having to experiment to f ind which pretraining
dataset works best (Singh et al., 2020). Recall that the goal of pretraining
with an image annotations dataset in multimodal models is to adapt the
underlying transformer-based pretrained language model (usually BERT)
to accept both image and text features and learn patterns between image
features and text features. VisualBERT’s pretraining tasks ref lect these
goals: the masked language model with images aims to predict masked out
words using the image and the unmasked text, while the sentence-image
prediction aims to predict which caption actually belongs to an image (Li et
al., 2019). Other models with a pretraining step use similar pretraining tasks.

Instead of pretraining BERT with an image annotations dataset, we
provide BERT with explicit image captions generated in the previous step
from a pretrained image captioner. A transformer decoder initialized with
pretrained BERT weights learns the relationship between the image and the
image captions. Inspired by neural translation models (see Figure 2), this
step aims to “translate” the image features to text features. Simply inputting
text and image features directly into a pretrained BERT model without
multimodal pretraining is problematic because their input representations
have different levels of abstraction (Lu et al., 2019). A learning rate that is
too low will better preserve the general language understanding of BERT
but learn too little from the image features; a learning rate that is too high
will damage the BERT language model’s pretrained weights. The image
translation step maps the image features to the relevant parts of the text
feature subspace to avoid this issue.

To implement image translation, we use a 1 × 1 convolution over the
activation map z to create a new feature map ​​z ′​ ∈ ​ℝ​​ d×7×7​​(if using ResNet-50
or ResNet-152), where d = 768 if using BERTbase or d = 1024 if using BERTlarge.
The decoder expects a sequence of vectors as input, so we collapse the
spatial dimensions of z′ into one dimension, resulting in a ​​z ″​ ∈ ​ℝ​​ d×49​​
feature map. The image feature map z″ is inputted at the encoder-decoder
layer of the BERT decoder. At the encoder-decoder layer, the image caption

290 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

attends to the image, decoding the 49 d-dimensional vectors in parallel. In
essence, this layer re-expresses the word embedding of each word in the
image caption as a weighted sum of image features. The output of the BERT
decoder is called the “translated” image.

Pretrained Language Model
The text, image captions, and “translated” image feature map are input-
ted into a transformer initialized with BERT weights. We distinguish
text, image captions, and “translated” image features using different
token type embeddings. Because only two token type embeddings are
pretrained by BERT, we initialize the third token type embedding as
the average of the two pretrained token type embeddings and add N
(0, 0.0001) noise to each dimension of the embedding. The model uses
0-indexed position embeddings for each segment, meaning it starts
counting from position 0 for each segment. Lastly, we append the [CLS]
token to the beginning of the sequence, which acts as an embedding of
the observation.

The BERT encoder outputs the joint image-text representation. The
representation is either the average across all outputted vectors (the gray
outputs in Figure 5) or the f irst outputted vector that corresponds to the
[CLS] token (the black output in Figure 5); the choice is a hyperparameter.
In our applications, we f ind the averaging approach typically works
slightly better than using the output vector corresponding to the [CLS]
token.

Missing Modalities
To handle missing modalities, we use attention masks. Recall, from Equations
3, 4, and 5, that the outputted vector zi for i ∈ {1, ..., N} from attention is
calculated as

​​w​ ij​ ′ ​ = ​q​ i​ T​ ​k​ j​​​

​​​w​ ij​​ = soft max​(​​ ​w​ ij​ ′ ​​)​​​​

​​z​ i​​ = ​∑ j​​ ​w​ ij​​ ​v​ j​​​​

We can set the weight ​​w​ ij​ ′ ​​ to – ∞ for observations of vj that need to be excluded
from calculating zi; this effectively sets wij to 0. This is a mechanism called

WU & MEBANE� 291

MARMOT

masking (Vaswani et al., 2017). Masking is typically used for translation
tasks when one does not want the attention mechanism to “peek” ahead
and batching together texts of unequal lengths.

We take advantage of masking by simply masking out the missing
modality in the pretrained language model step. As a concrete example, a
dataset may contain observations that all have text, but some are missing
an image. We can associate a dummy image and dummy image caption
with observations that are missing images. We can mask out the translated
dummy image and dummy image caption when they are inputted into
the BERT encoder. Backpropagation updates the parameters in the BERT
encoder using only the text and does not update the parameters in the
BERT decoder in modality translation, as the attention masks block the
f low of gradients.

Application 1: Election Incidents Reported on Twitter During the
2016 U.S. General Election

Dataset Background
Mebane et al., 2018 collected a dataset of tweets that reported election
incidents during the 2016 U.S. general election. An election incident is
an individual’s personal experience with voting or some other activity in
the election. Tweets came between October 1, 2016 and November 8, 2016.
The dataset has a binary outcome variable indicating whether the tweet
was a reported incident or not. Among the tweets that were classif ied as
an election incident, Mebane et al., 2018 also include a deeper breakdown
about what type of incident it was. The categories are line length/waiting
time/polling place overcrowding, polling place event, electoral system,
absentee/mail-in/provisional ballot issue, and registration. These categories
are then further broken down into subcategories, which are adjectives
characterizing the categories. Definitions of the subcategories can be found
in the Supplemental Information; exact definitions of the categories can be
found in Mebane et al., 2018. Human coders of the Twitter data examined
all modalities to assign labels.

In this section, we focus only on the multilabel classif ication part of
the data processing. Of the total 4,018 tweets labeled with categories and
subcategories, 1,741 tweets included at least one image. We used 80% of
the dataset for hyperparameter selection and training and set aside the
remaining 20% of the dataset as a test set.

292 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

Results
Mebane et al., 2018 use a text-only ensemble classif ier consisting of logistic
regression, multinomial naive Bayes, and linear support vector machine.
Mebane et al., 2018 binarize each category and subcategory, meaning that
they treat every category and the subcategories under each category as
individual binary classif ication problems. The ensemble classif ier only uses
text features from the tweets, ignoring all images. Mebane et al., 2018 also
append the date and location of the tweet to the text of the tweet.

We take the same approach to make results comparable to results found in
Mebane et al., 2018: we also binarize each category and subcategory and we
append the date and location of the tweet to the text of the tweet. MARMOT
representations were classified using a two-layer feedforward neural network
with a ReLU activation function and we used the cross-entropy loss function.
The Supplemental Information contains information about hyperparameters.
Results from the ensemble classif ier and MARMOT are in Table 1; the results
are expressed as F1 scores over the positive class. If a tweet had an image,
three image captions were generated using self-critical sequence training.

MARMOT outperforms the ensemble classif ier on all categories and
subcategories except for “Line Length: No crowd or no line.” In that specif ic
subcategory, MARMOT matches the performance of the text-only ensem-
ble classif ier. There are improvements in the F1 scores where we would
intuitively expect images to play a role, such as in the short and long line
subcategories under the “Line Length” category. There are also improvements
in some subcategories that contain few images. For example, the text-only
ensemble classif ier struggled with the subcategory “Polling Place Event: Did
not function as expected.” MARMOT performed significantly better, despite
the subcategory containing very few images: only 19 of the 86 tweets in this
subcategory had an image. In other words, it is not immediately apparent that
all improvements are the direct result of including images. MARMOT uses
BERT, which consistently outperforms other text classif iers as well (Devlin
et al., 2019). We turn to look at model variants to examine this possibility.

Model Variants
We look at two variants of the model: the first uses only the text from each
observation with the standard BERT encoder, and the second uses the text and
image captions with the BERT encoder but does not use the translated image.
The results of the two model variants, along with the full MARMOT model, are in
Table 2, which details the F1 score over the positive class for each model variant.

We can attribute many of the improvements over the text-only ensemble
classif ier baseline to BERT. For example, most of the improvements in the

WU & MEBANE� 293

MARMOT

category “Line Length: Large crowd or long line” came from BERT. The
inclusion of images did offer an improvement in the F1 score in several
subcategories—namely, “Not an Incident,” “Line Length: No crowd or no
line,” “Line Length: Small crowd or short line,” “Polling Place Event: Did not
function as expected,” “Polling Place Event: Functioned properly,” “Electoral
System: Did not function properly,” “Absentee / Mail-in Voting Issue: Did not
function properly,” “Absentee / Mail-in Voting Issue: Neutral observation,”
and “Registration: Able to register.” Therefore, not all performance gains

Table 1 Binarized classifier performance across the ensemble classifier and MARMOT

over the election incidents dataset with 4,018 tweets. Categories are in bold, while

subcategories are listed with letters. Results of the ensemble classifier and MARMOT

are over a test set that is 20% of all tweets and the results are F1 scores on the positive

class. For a definition of the F1 metric, refer to the Supplemental Information. The

total number of observations (across both the training and test sets) that belong to

each category and subcategory is noted in the third column. The total number of

images (across both the training and test sets) for each category and subcategory is

noted in the fourth column. The results of the ensemble classifier come directly from

Mebane et al., 2018. Numbers are rounded to two decimal places because the results

of the ensemble classifier were originally reported to only two digit places.

Ensemble MARMOT Support # Pictures

Not an Incident 0.66 0.72 1149 330
Line Length 0.91 0.92 1045 440
(a) No crowd or no line 0.61 0.61 85 36
(b) Small crowd or short line 0.21 0.30 91 31
(c) Large crowd or long line 0.82 0.88 869 373
Polling Place Event 0.78 0.82 1477 721
(a) Did not function as expected 0.08 0.49 86 19
(b) Neutral observation 0.47 0.63 481 255
(c) Functioned properly 0.63 0.68 910 447
Electoral System 0.63 0.67 596 244
(a) Did not function properly 0.05 0.15 89 28
(b) No comment on function 0.65 0.73 473 211
Absentee / Mail-in Voting Issue 0.87 0.88 1702 748
(a) Did not function properly 0.34 0.53 121 28
(b) Neutral observation 0.60 0.71 613 296
(c) Functioned properly 0.70 0.77 968 424
Registration 0.85 0.88 475 190
(a) Not able to register 0.17 0.62 59 9
(b) Neutral observation 0.84 0.86 339 166
(c) Able to register 0.50 0.69 77 15

294 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

over the text-only ensemble classif ier baseline resulted from using a more
powerful text representation architecture.

The lack of an image may help MARMOT to predict the classes of many
more tweets correctly. Recall that MARMOT deals with a missing image in
an observation by masking out a dummy image. The learned representation
is different for observations that only have text versus observations with
both image and text. The differences in these representations can be a
pattern differentiating a positive classification from a negative classification.
MARMOT may be helpful in both situations where images play a role in an
observation’s classif ication and situations where the lack of an image may
further clarify an observation’s classif ication.

Table 2 Results of MARMOT model variants over the election incidents dataset with

4,018 tweets. The first column reports the F1 scores over each binarized category or

subcategory from a model using a pretrained BERT encoder with only text input.

The second column reports the results from a model using a pretrained BERT

encoder with text and image captions as inputs, but does not use the translated

image. The third column reports the results from the full MARMOT model.

BERT, Text Only BERT, Text and
Image Captions

MARMOT

Not an Incident 0.65 0.71 0.72
Line Length 0.92 0.92 0.92
(a) No crowd or no line 0.44 0.44 0.61
(b) Small crowd or short line 0.21 0.19 0.30
(c) Large crowd or long line 0.86 0.87 0.88
Polling Place Event 0.81 0.81 0.82
(a) Did not function as expected 0.36 0.41 0.49
(b) Neutral observation 0.55 0.58 0.63
(c) Functioned properly 0.65 0.65 0.68
Electoral System 0.66 0.65 0.67
(a) Did not function properly 0.11 0.11 0.15
(b) No comment on function 0.72 0.72 0.73
Absentee / Mail-in Voting Issue 0.87 0.87 0.88
(a) Did not function properly 0.42 0.49 0.53
(b) Neutral observation 0.67 0.67 0.71
(c) Functioned properly 0.77 0.77 0.77
Registration 0.89 0.87 0.88
(a) Not able to register 0.50 0.52 0.62
(b) Neutral observation 0.88 0.85 0.86
(c) Able to register 0.65 0.63 0.69

WU & MEBANE� 295

MARMOT

Examples of Successful Classifications
We take a qualitative look at some of the classif ier results using the MAR-
MOT representations to understand better the strengths of the MARMOT
multimodal representations.

Line Length: Large Crowd or Long Line
MARMOT outperformed the text-only ensemble classif ier in the large
crowd or long line subcategory. Figure 6 show examples of tweets that were
correctly classif ied as long lines at polling places by MARMOT.

The text-only BERT classif ier, however, also correctly classif ied most
of these types of examples. MARMOT only did marginally better in this
subcategory in terms of the F1 score. Plausibly, the text-only models can learn
to classify any tweet mentioning a line at a polling station as a report of a
long line at a polling station. However, we can see that MARMOT is slightly
more nuanced than that. Figure 7 is an example of a tweet that reports a
long line at a polling place. It notes that the polls are open in Georgia, but
it did not refer to Peachtree Corners as a polling place. The image depicts
a scene where there is a long line at a polling station, indicated by the
“Vote Here” sign. The text-only BERT classif ier misclassif ied this tweet,
while MARMOT correctly classif ied the tweet as depicting a long line at
a polling place.

Figure 6 Two example tweets of long lines at polling stations.

296 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

Polling Place Events: Functioned Properly
Images play a role in classifying tweets of polling places functioning cor-
rectly, particularly tweets involving people smiling after voting. Figure 8
contains two example tweets of polling places functioning correctly. In the
f irst example, the person advocates for voting but does not directly indicate
with the text that he successfully voted. The image depicts a person with
an “I Voted” sticker on his arm, indicating that he was successful in voting
and thus that a polling place functioned correctly. The text-only classif ier
failed to classify this observation as polling place functioning correctly,
while MARMOT correctly classif ied this tweet as a tweet indicating a
polling place functioning correctly. In the second example, the individual
reports that he was honored to vote and included a picture of himself
smiling. The text indicates that he voted at a polling station but does not
describe his experience; the picture, on the other hand, indicates that he
was happy to vote, suggesting that the polling place functioned correctly.
MARMOT correctly classif ies this tweet as a tweet indicating a polling
place functioning correctly; the text-only classif ier, however, misclassif ied
this tweet.

Figure 7 “Polls are open in GA. Proud to cast my ballot. Longest line ever seen in
Peachtree Corners!”

WU & MEBANE� 297

MARMOT

Application 2: Hateful Memes

There is increasing interest in social sciences and computer science around
detecting and analyzing hate speech on social media. Siegel et al., 2021 looked
at 750 million tweets and did not f ind an increase in hate speech or white
nationalistic language on Twitter. Siegel and Badaan, 2020 examine what
counter-speech initiatives are most effective at reducing sectarian hate
speech online. MacAvaney et al., 2019 and Davidson et al., 2017 examine
the machine learning approaches to detecting hate speech on social media.

The Hateful Memes dataset aims to help develop models that more ef-
fectively detect multimodal hateful content. Besides being a well-curated
dataset for building models that detect multimodal hate speech, the Hateful
Memes dataset is also useful for comparing how MARMOT performs against
the state-of-the-art multimodal models because every observation has both
text and image. We f ind that MARMOT shows signif icant improvements
over the results of benchmark state-of-the-art multimodal models on this
classif ication problem, suggesting that MARMOT does not lack performance
over other multimodal classifiers even though it does not require pretraining
on an image annotations dataset and it can calculate representations for
observations missing modalities.

Dataset Background
Facebook Research recently released the Hateful Memes dataset to develop
and test multimodal models (Kiela et al., 2020). This dataset was also used
in the Hateful Memes challenge.3 Kiela et al., 2020 def ine hate as follows:

Figure 8 Two example tweets of polling places functioning correctly.

298 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

“A direct or indirect attack on people based on characteristics, including
ethnicity, race, nationality, immigration status, religion, caste, sex, gender
identity, sexual orientation, and disability or disease. We define attack as
violent or dehumanizing (comparing people to non-human things, e.g.
animals) speech, statements of inferiority, and calls for exclusion or segrega-
tion. Mocking hate crime is also considered hate speech.”

The problem requires a multimodal model to solve because the image and
text may, on their own, not be hateful, but the combination of the two may
be hateful. To give an example of an unkind (but not hateful) meme that
captures this idea, consider an image of a skunk paired with the text, “Love
the way you smell today.” Neither the text nor the image is mean on its own.
However, the combination of the two modalities makes it an unkind meme.

The dataset contains 10,000 memes. The validation set is 5% of the data,
the test set is 10% of the data, and the rest of the data is set aside as training
data. Most memes were actually found on Facebook, but they also created
a set of benign confounders, which are artif icially-created memes based
on an actual hateful meme that has been made non-hateful by replacing
the image or replacing the text. In total, there are f ive types of memes in
the dataset: multimodal hate, where the text and image on their own are
not hateful but are hateful when paired together; unimodal hate, where
the text or image (or both) are already hateful on their own; benign text
confounders; benign image confounders; and random non-hateful examples.
Multimodal hate makes up 40% of the data, unimodal hate makes up 10% of
the data, benign text confounders make up 20% of the data, benign image
confounders make up 20% of the data, and 10% of the data are random
non-hateful. The dataset, however, does not specify which observations
belong to which categories, meaning we could not use the type of meme
as part of the classif ication process.4 The outcome of interest is whether a
meme is hateful or not. The Hateful Memes dataset has 5,000 hateful memes
and 5,000 non-hateful memes.

Results
For MARMOT, we used a two-layer feedforward neural network with a
ReLU activation function as the classif ier and we used the cross-entropy
loss function. We generated three captions for each image using self-critical
sequence training. For information about hyperparameter selection, see
the Supplemental Information. The accuracy learning curve of MARMOT
over the validation set, used to assess potential overf itting, can be found
in the Supplemental Information. Kiela et al., 2020 provide results over the
test set for many multimodal models, including ViLBERT, VisualBERT, and

WU & MEBANE� 299

MARMOT

MMBT, which are state-of-the-art multimodal classif iers. Results over the
test set can be found in Table 3. Results over the validation set can be found
in the Supplemental Information.

MARMOT outperforms the benchmark state-of-the-art multimodal
classif iers on both accuracy and area under the receiver operating charac-
teristic curve (AUC).5 MARMOT also outperforms the pretrained variants
of ViLBERT and VisualBERT. MARMOT does not trade off performance on
classif ication problems to accommodate potentially missing modalities—it
can perform just as well, if not better, than the baseline state-of-the-art
multimodal models while still retaining this critical property that makes
it useful for social science research. MARMOT’s accuracy improves fur-
ther when MARMOT is used in a deep ensemble, which uses the majority

Table 3 Accuracy and area under the receiver operating characteristic curve (AUC)

performance metrics across the 11 baseline models, MARMOT, and MARMOT in a

deep ensemble over the test set of the Hateful Memes dataset. For definitions of

these metrics, refer to the Supplemental Information. “Grid” means that image

features derived from ResNet-152 were used as input features. “Region” means that

segmented image features derived using Faster R-CNN (Ren et al., 2015), rather

than the entire image, were used as input features. Concat BERT means that BERT

embedding features were concatenated with image features. VisualBERT COCO

means that VisualBERT was pretrained over the MS COCO dataset (Lin et al., 2014).

ViLBERT CC means ViLBERT was pretrained over the Conceptual Captions dataset

(Sharma et al., 2018). “Deep Ensemble” means that the final prediction for each

observation was the majority predicted class across 11 iterations of MARMOT.

Results are over the test set, which is 1,000 memes.

Model Accuracy AUC

Image - Grid 0.5200 0.5263
Image - Region 0.5213 0.5592
Text BERT 0.5920 0.6508
Late Fusion 0.5966 0.6475
Concat BERT 0.5913 0.6579
MMBT - Grid 0.6006 0.6792
MMBT - Region 0.6023 0.7073
ViLBERT 0.6230 0.7045
VisualBERT 0.6320 0.7133
ViLBERT CC 0.6110 0.7003
VisualBERT COCO 0.6473 0.7141
MARMOT 0.6760 0.7530
MARMOT - Deep Ensemble 0.6920 0.7493

300 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

predicted class across 11 separate iterations of MARMOT (Lakshminarayanan
et al., 2017). In the Hateful Memes challenge, MARMOT f inished in the top
1% of all contestants.6

Model Variants
We analyze two variants of the model: the f irst uses only the text from each
observation with BERT and the second uses the text and image captions with
BERT but not the translated image. The results of the two model variants
are in Table 4.

The addition of the generated image captions accounts for most of the
improvement over using the text alone with a BERT model: there is a 9
point improvement in AUC and a 6 point improvement in accuracy with
the image captions. As the captions are text, BERT can easily learn the
relationships between the text and the image captions. There is a further
improvement when using the full MARMOT model, especially in terms of
accuracy. Image translation can capture additional information about the
image that is useful for the detection of hateful memes.

Examples of Successful Classifications
To more intuitively understand how MARMOT is classifying the memes as
hateful or not, we qualitatively look at a few classif ication examples where
MARMOT was successful. Please note that some of these examples may
contain sensitive or offensive content.

The most diff icult memes to classify as hateful are the multimodal hate
memes. These are the memes where the text alone is not hateful, and the
image alone is not hateful, but when put together the meme becomes hateful.

Table 4 Results of the MARMOT model variants over the test set of the Hateful

Memes dataset. The first model variant uses only the text; the result is taken

directly from Kiela et al., 2020. The second model variant uses the text and image

captions generated during modality translation, but the translated image is not

used. The third model variant is the full MARMOT model. The fourth model variant

is MARMOT used in a deep ensemble.

Model Variant Accuracy AUC

BERT with Text Only 0.5920 0.6508
BERT with Text and Image Captions 0.6510 0.7469
MARMOT 0.6760 0.7530
MARMOT - Deep Ensemble 0.6920 0.7493

WU & MEBANE� 301

MARMOT

Figure 9 shows an example of a multimodal hateful meme which MARMOT
correctly classif ied as hateful.

The model may learn that the use of the words “dishwasher” or “sandwich
maker” in a memes setting usually implies that the meme is misogynistic.
After all, across the training and validation datasets, most of the memes
containing the phrase “dishwasher” or “sandwich maker” are hateful. To
further demonstrate evidence that the model is learning relationships
between the image and the text, we f irst look at an example, shown in
Figure 10, consisting of three memes. The memes on the left and in the
center have the same image but different text (benign text confounder).
The memes on the left and the right have different images but the same text
(benign image confounder). MARMOT correctly classif ies the f irst meme
on the left as hateful and correctly classif ies the meme in the center and
on the right as non-hateful.7

To take this analysis one step further, we create visualizations of the at-
tention weights of the BERT encoder used in the last stage of MARMOT.8 To
be clear, these visualizations do not causally show why MARMOT correctly
classified a specific observation; in other words, we are not trying to learn about
intent or meaning behind how the MARMOT representations are constructed.
Instead, these visualizations show that MARMOT can learn important associa-
tions between the image and text. Figure 11 shows the attention weights of the

Figure 9 An example of a multimodal hateful meme. This meme was correctly classified
by MARMOT as hateful. ©Getty Images.

302 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

12th attention head of the 10th transformer layer in the BERT encoder. The line
weight reflects the attention weight between the attending tokens and the
attended tokens. In the hateful example (the meme on the left in Figure 10),
the token “russian” from the text of the meme shares a high attention weight
with the token “cow” from the image caption.9 In the non-hateful benign text
confounder example (the meme in the center in Figure 10), the token “i” from
the text of the meme shares a lower attention weight with the token “cow”
from the image caption compared to the hateful example. In the non-hateful
benign image confounder example (the meme on the right in Figure 10), there
is essentially no attention weight learned between the token “russian” and the
image caption. The attention weights suggest that MARMOT learns different
relationships among the images and text between the hateful and non-hateful
examples, even when the text or image is the same.

We look at another example, shown in Figure 12 where the text is the
same, but the images are different. MARMOT, again, correctly classif ies
the meme on the left as hateful and correctly classif ies the meme on the
right as non-hateful.10

To take a closer look at what the model learns between the image and
the text, we again create visualizations of the attention weights of the BERT
encoder used in the last stage of MARMOT. Figure 13 shows the attention
weights of the 12th attention head of the 10th layer in the BERT encoder.
Again, the line weight reflects the attention weight between the attending
tokens and the attended tokens. In the hateful example, the token “dish”
shares a high attention weight with the token “woman” from the image
caption. In the non-hateful example, the token “dish” shares a high attention
weight with the token “man” from the image caption. Again, the attention
weights suggest that MARMOT learns different relationships among the
images and text between the non-hateful and hateful examples, even when
the text is the same.

Figure 10 An example of a multimodal hateful meme with a benign text confounder
counterpart and benign image confounder counterpart. MARMOT correctly classifies
the meme on the left as hateful and the meme in the center and on the right as
non-hateful. ©Getty Images.

WU & MEBANE� 303

MARMOT

Conclusion and Future Directions

Labeling is usually required to identify posts of interest for most content
analyses of social media posts. Human coders usually consider image and
text if both are available. However, automated machine approaches are
almost always unimodal, focusing exclusively on either the text or images.
This can create potential biases in downstream analyses of the machine
classif ied data. Ways of representing text or image as quantitative features
are well-known in the computer science literature, but multimodal repre-
sentations—joint representations of image and text—are still a budding
f ield in computer science. Many state-of-the-art multimodal models require
that every observation have both image and text and require extensive
pretraining on image annotation datasets. The computational costs and the

Figure 11 A visualization of the attention weights from the 12th attention head of the
10th layer of the BERT encoder from the last step of MARMOT for the three memes
from Figure 10. The visualizations on the left, center, and right correspond with the left,
center, and right memes, respectively, from Figure 10. The line weight indicates the
attention weight. Visualizations were created using the package described in Vig, 2019.
The token “Img Feat” indicates an inputted image feature, which does not translate to
a word token.

304 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

reality that many datasets of interest for social scientists contain observa-
tions with missing modalities render these state-of-the-art multimodal
models essentially unusable.

We present a new method that calculates joint image-text representations
called multimodal representations using modality translation, or MARMOT,
to solve both issues. It eschews pretraining, meaning that training and
inference can be completed with minimal computational resources. It also
leverages off-the-shelf pretrained models: good performance results can be
achieved on relatively small datasets. Lastly, it can calculate representations
for observations missing modalities.

Specif ically, we f irst note that the pretraining over image annotation
datasets used in models such as VisualBERT (Li et al., 2019) is done to adapt
the underlying BERT model to accept both image and text features, rather
than only the text features it was initially pretrained on, and to relate image
features with text features. Additional pretraining with the data of interest
is done to adapt further the model to the target domain.

To capture the same spirit of this process without undergoing the com-
putationally expensive pretraining procedure, we develop a process called
modality translation. First, we generate image captions directly using a
pretrained image captioner. To learn patterns between the image and its
image caption, we use a transformer decoder initialized with pretrained
BERT weights. The image captions are inputted into the BERT decoder, and
the image features, derived from a pretrained image model, are inputted at
the encoder-decoder attention layer. This process calculates what we call
the translated image.

After obtaining the image caption and the translated image through
modality translation, we jointly input the text of the observation, the text

Figure 12 An example of a multimodal hateful meme with a benign image confounder
counterpart. MARMOT correctly classifies the meme on the left as hateful and the
meme on the right as non-hateful. ©Getty Images.

WU & MEBANE� 305

MARMOT

of the image caption, and the translated image as one sequence into the
transformer encoder initialized with pretrained BERT weights. The three
parts of the sequence are differentiated using different token type embed-
dings. The joint representation is either the outputted vector corresponding
to the [CLS] token or the average across all vectors of the outputted sequence.

Figure 13 A visualization of the attention weights from the 12th attention head of the
10th layer of the BERT encoder from the last step of MARMOT for the two memes from
Figure 12. The visualizations on the left and right correspond with the hateful and
non-hateful memes, respectively, from Figure 12. The line weight indicates the attention
weight. Visualizations were created using the package described in Vig, 2019. The token
“Img Feat” indicates an inputted image feature, which does not translate to a word token.

306 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

We apply MARMOT to two classif ication tasks: classifying tweets of
election incidents during the 2016 U.S. general election (Mebane et al., 2018)
and identifying hateful memes (Kiela et al., 2020). In the election incidents
dataset, all observations have text, but only some have images. MARMOT
outperforms the ensemble classif ier found in Mebane et al., 2018 in 19 of 20
categories in multilabel classifications of tweets (and equals the performance
in the last category). However, with the election incidents dataset, we cannot
use other state-of-the-art multimodal classif iers because some observations
do not contain an image. We turn to the Hateful Memes dataset, where
all observations have both text and image. MARMOT improves upon the
benchmark state-of-the-art multimodal models in terms of accuracy and area
under the receiver operating characteristic curve (AUC), even outperforming
pretrained multimodal classif iers. MARMOT improves the best result set
by VisualBERT in terms of accuracy from 0.6473 to 0.6760 and in terms of
AUC from 0.7141 to 0.7530. Using MARMOT in a deep ensemble further
improves accuracy to 0.6920. Qualitatively looking at examples from the test
set, MARMOT can correctly classify multimodal hate memes—the memes
where the text alone and the image alone are not hateful but combined are
hateful. Visualizations of the attention weights used in the BERT encoder,
the f inal stage of MARMOT, further suggest that the architecture is learning
important associations between the text and image when making predic-
tions. Thus, MARMOT does not trade off performance on classif ication
problems to accommodate missing modalities. It performs just as well if not
better than benchmark state-of-the-art multimodal models while having
this key property that makes it useful for political science, communications,
and social media research.

There are still many future directions for this project. Numerous
methodological details still require experimentation, such as using newer
pretrained language models, using image regions derived from a pretrained
image segmentation model such as Faster R-CNN (Ren et al., 2015) instead
of image features from ResNet, using different training strategies, and
using MARMOT in conjunction with other pretrained vision-and-language
models if all observations have both image and text. We also aim to extend
MARMOT to non-social media applications, such as multimodal elements
in newspapers and other forms of media.

We have also not used MARMOT representations in any substantive
applications, such as using the predictions in a regression framework. In
a regression framework, MARMOT can be potentially used in two ways.
First, the predictions from using MARMOT representations can be used as
a covariate. Second, the predictions from using MARMOT representations

WU & MEBANE� 307

MARMOT

can be used as an outcome variable. Using the predictions calculated using
MARMOT representations as either the outcome variable or covariate
without any adjustments can lead to bias or uncontrolled variance. Fong
and Tyler, 2020 discuss how to adjust machine predictions when used as
covariates, and S. Wang et al., 2020 discuss how to adjust machine predictions
when used as the outcome variable. The two frameworks apply to machine
prediction pipelines generally, meaning such frameworks can be jointly used
with MARMOT to make its predictions useful in substantive applications.

Acknowledgements

This work was supported in part by an NSF RIDIR grant under award
number SES-1925693 (“The Sub-National Data Archive System for Social
and Behavioral Data”) and a fellowship from the Michigan Institute for
Computational Discovery and Engineering (MICDE). We would like to
thank Michael Bailey, Pablo Barberá, Ben Lempert, Emily Mower Provost,
Kevin Quinn, Sarah Shugars, Stuart Soroka, and two anonymous reviewers
for helpful suggestions and comments.

Supplemental Information

Feedforward Neural Networks
Define a single-layer feedforward neural network as s = XW1, where X is
the design matrix of dimension N × d and W1 is d × C , where N is the total
number of observations, d is the total number of input features, and C is
either 1 when using neural networks for regression problems or C is the total
number of classes that an observation can belong to. Including a column
of 1’s in the design matrix adds a bias term. This produces a score matrix s
of dimension N × C. In a classif ication problem, each row contains the raw
scores of an observation belonging to each class c. The argmax of each row
is the predicted class.

We can plausibly give this network more representational power by using
a second weight function, W2, of dimension k × C , and redefining W1 as a d
× k matrix, where k is a dimension that we can choose and is often referred
to as the number of hidden neurons. This is known as a two-layer neural
network. Notice that we cannot simply define the two-layer neural network
as s = (XW1)W2, because this simply collapses back into a single-layer neural
network: s = (XW1)W2 = XW where W = W1W2 and has dimensions d × C.

308 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

Instead, we introduce a nonlinear function, f , called the activation function.
This nonlinear function is applied pointwise. We can then properly def ine
the two-layer neural network as s = f(XW1)W2. Popular options for f include
the inverse tan function, the ​​σ​(​​x​)​​ = ​  1 _ 1 + ​e​​ −x​​​​, and the ReLU function, ReLU
(x) = max (0, x). Because of its simplicity and its empirically-determined
robustness, the ReLU function is the most popular activation function.

A three-layer neural network would be similarly def ined: redef ine W1
as a d × k1 matrix, redefine W2 as a k1 × k2 matrix, and define W3 as a k2 × C
matrix; here, k1 and k2 are the number of hidden neurons. Then, s = f(f(XW1)
W2)W3. s is ultimately still an N × C matrix, with prediction carried out in
the same way as the single-layer neural network.

The ultimate goal of the model is to have weights that minimize prediction
errors. To do this, we need a measure of how well the model predicts and
a way to update the weights of the network such that it reduces prediction
errors. A loss function quantif ies how well the model performs by compar-
ing predictions with ground truth data. Popular loss functions include
the cross-entropy loss function for classif ication problems and the mean
squared error for regression problems. We can then use backpropagation
(Rumelhart et al., 1986) to calculate the gradient of the loss function: we
calculate the gradient of the loss function with respect to each weight one
layer at a time, iterating from the last layer to the f irst layer. Weights are
then updated using a gradient descent step.

Residual Connections
Theoretically, a deeper neural network should be able to perform just
as well as a shallower neural network. A deeper network can imitate a
shallower network by copying over the layers of the shallower network
and setting the additional layers to the identity mapping. But He et al.,
2015 observe that deeper networks often perform worse than shallower
networks. They argue that as a neural network increases in layers it is
harder for information from shallower layers to propagate to deeper layers.
To solve what they call the degradation problem, they propose a very
simple solution: after a set of layers F(x), we sum the initial input x and
the learned mapping F(x). In other words, this set of layers outputs F(x) + x
instead of H(x). This allows information from shallower layers to propagate
forward more easily. It is called a residual connection because the layers
learns the residual, or information not immediately learned from Xdirectly.
Although simple in concept, residual connections allowed much deeper
networks to be trained.

WU & MEBANE� 309

MARMOT

Layer Normalization
Gradients with respect to weights in one layer depend on the outputs of
the previous layer. This can cause the distribution of the parameters of one
layer to shift in a way that affects the quality of learning for deeper layers. A
normalization procedure, such as layer normalization, can reduce covariate
shift (Ba et al., 2016). Layer normalization normalizes the inputs across the
features. We can recalculate the inputs at each layer as follows:

​​μ​ i​​ = ​ 1 _ k​ ​∑ k=1​ k  ​ ​x​ ik​​​​

​σ ​ i​ 2​ =​​​ ​ 1 _ K​ ​∑ k=1​ K  ​ ​​(​​ ​x​ ik​​ − ​μ​ i​​​)​​​​ 2​​​

​​x​ ik​ ^ ​ = ​ ​x​ ik​​ − ​μ​ i​​ _ ​√ 
_

 ​σ​ i​ 2​ + ε ​​​

where xik is the kth feature of the ith sample and K is the total number of
features. The last step is to scale and shift ​​​   x ​​ i​​​ by γ and β , respectively, which
are learnable parameters: ​​​LN​ γ,β​​​(​​ ​x​ i​​​)​​ = γ ​​   x ​​ i​​ + β​​.

Additional Details About BERT
There are two variants of BERT. BERTbase is 12 transformer encoder blocks
stacked, while BERTlarge is 24 transformer encoder blocks stacked. The former
uses embeddings with 768 dimensions, while the latter uses embeddings
with 1,024 dimensions. BERTbase is 110 million parameters, while BERTlarge
is 340 million parameters. BERT takes as input a sequence of WordPiece
embeddings (Wu et al., 2016).

In MLM, 15% of words are masked out and BERT must predict what the
masked out word is. In NSP, pairs are sentences are inputted. Half of these
pairs’ second sentence is the sentence that follows the f irst sentence in the
original corpus; the other half contains sentences randomly paired together.
BERT must predict if the second sentence actually follows the f irst sentence
in the original corpus. This prediction is made using the corresponding
output vector for the [CLS] token.

Popular word embedding methods such as word2vec or GloVe embeddings
(Pennington et al., 2014) are context-free, meaning that each word is assigned
a f ix embedding irrespective of its context. For example, the word2vec
embedding for the word “trump” would be the same in the sentences “I
support Donald Trump” and “She played the trump card,” despite the fact that
“trump” has different meanings in each sentence. In other words, word2vec

310 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

or GloVe word embeddings cannot map multiple vectors for polysemous
words in a self-supervised fashion. BERT embeddings, on the other hand,
are context-dependent: the BERT embedding for a given word is different for
each context. The self-attention mechanism within the transformer encoder
outputs a word embedding that, in essence, is a weighted average of all the
other word embeddings of words in the document. The word embedding
for “trump” in each sentence would be different.

Definition of Evaluation Metrics

Accuracy, Precision, Recall, and F1 Score
In binary classif ication problems, predictions are either for the positive or
negative class. We can evaluate our predictions against the ground truth
using the terms true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). False positives are known as Type I errors, while
false negatives are known as Type II errors. With the predictions sorted
into one of these four categories, we can calculate accuracy, precision,
recall, and the F1 score. The metric most important to consider varies from
problem to problem, although the F1 score is often used as an overall metric
of performance. Precision, recall, and F1 are defined individually over each
of the two categories. Macro and micro F1 are def ined by combining the F1
metrics across the two classes. Accuracy is def ined across the two classes.

​Accuracy =  ​  TPTN _____________ TP + TN + FP + FN​​

​​Precision​ 0​​  =  ​  TN _ TNFN​​

​​Precision​ 1​​  =  ​  TP _ TP + FP​​

​​Recall​ 0​​  =  ​  TN _ TN + FP​​

​​Recall​ 1​​  =  ​  TP _ TP + FN​​

​​F1​ 0​​  = 2 · ​  ​Precision​ 0​​ ​Recall​ 0​​ ______________ ​Precision​ 0​​ ​ + Recall​ 0​​​​

WU & MEBANE� 311

MARMOT

​​F1​ 1​​  = 2 · ​  ​Precision​ 1​​ ​Recall​ 1​​ ______________ ​Precision​ 1​​ ​ + Recall​ 1​​
​​

Denoting N = N0 + N1, where N0 is the number of observations that belong
to the negative class and N1 is the number of observations that belong to
the positive class,

​Macro F1 =  ​​F1​ 0​​ ​ + F1​ 1​​ _ 2 ​​

​Micro F1 =  ​​N​ 0​​ _ N ​ ​F1​ 0​​  +  ​​N​ 1​​ _ N ​ ​F1​ 1​​​

Area Under the Receiver Operating Characteristic Curve (AUC)
The receiver operating characteristic curve (ROC curve) plots the true
positive rate (or recall) against the false positive rate at various threshold
settings. The true positive rate, or TPR, is def ined as ​​  TP _ TP + FN​​ while the false
positive rate, or FPR, is def ined as ​​  FP _ FN + TP​​. When we make a classif ication,
notice that the model does not simply return a 1 or 0; instead, it returns a
probability that an observation belongs to the positive class. For example, we
usually classify any inputted observation that returns a probability greater
than or equal to 0.5 as the positive class. But this threshold is arbitrary. If
we increase the threshold, the true positive rate would drop but so would
the false positive rate. If we decreased the threshold, the true positive rate
would rise but so would the false positive rate. See Figure 14 for an example
of an ROC curve. An observation under the diagonal line signals worse-than-
random; an observation on the line signals random guessing; an observation
at (0,1) indicates a perfect classif ier—it has a perfect TPR and the FPR is 0.

A way of assessing the ROC curve is to measure the area under the
curve, or AUC. A perfect AUC would be 1, corresponding to the 90 degree
curve that consists of a line segment from (0,0) to (0,1) and a line segment
from (0,1) to (1,1), indicating a perfect classif ier. More interestingly, the
AUC can be shown to be equivalent to the Mann-Whitney U statistic
(Hastie et al., 2000). The AUC is equal to the probability that a classif ier
will rank a randomly chosen positive instance higher than a randomly
chosen negative instance. Thus, the AUC can be interpreted as how well
the classif ier discriminates between the two classes. For this reason, it is
often the preferred metric over other metrics, like accuracy or F1. Its major
drawback is interpretability.

312 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

Additional Details about VirTex
Desai and Johnson, 2021 propose pretraining a deep convolutional neural
network (ConvNet) using images and image captions. This differs from the
typical approach of pretraining ConvNets, which typically uses a large,
labeled image dataset such as ImageNet (Deng et al., 2009). Their goal is to
learn high quality image representations while using much fewer images.
To do this, they jointly train a ConvNet and a transformer (Vaswani et
al., 2017) using image-caption pairs. They use ResNet-50 as the ConvNet.
The visual backbone extracts image features, and then the transformer
predicts the caption. The model is then trained end-to-end from scratch.
After this pretraining process, the ConvNet can be used for downstream
visual recognition tasks. See Figure 15 for an overview of the pretraining
setup.

Additional Details about Self-Critical Sequence Training
We use self-critical sequence training (Rennie et al., 2016) to calculate the
image captions. Deep generative models typically use a technique known as
teacher-forcing, which maximizes the likelihood of the next ground-truth
word given the previous ground-truth words. This creates a mismatch

Figure 14 Example of an ROC curve. Figure taken from https://www.statisticshowto.
com/receiver-operating-characteristic-roc-curve/.

WU & MEBANE� 313

MARMOT

between training and testing—during testing, the previous generated
words are used instead of the previous ground-truth labels. Rennie et al.,
2016 approach the image captioning problem with a reinforcement learning
framework. The recurrent models, the LSTMs, are the “agents” that interacts
with an external “environment” consisting of words and image features. The
parameters of the network def ine a policy pθ. When the end-of-sentence
token is generated, or EOS, the agent is given a “reward” that is computed
by evaluating generated caption with the ground-truth caption using some
kind of a metric, such as CIDEr. This model is pretrained on Microsoft COCO
(Lin et al., 2014). We do not further train this model; instead, we simply
put the pretrained model in inference mode and generated a caption (or
multiple captions) per image.

Details on Training MARMOT
To train MARMOT, the following hyperparameter choices need to be made:
–	 Using either BERTbase or BERTlarge; refer to the Supplemental Informa-

tion for more information about BERTbase and BERTlarge. The primary
difference is the number of encoder layers used to pretrain each model.

–	 The number of training epochs
–	 The learning rate
–	 The learning rate schedule
–	 The batch size
–	 The number of captions to use per image
–	 Whether to freeze certain parts of the architecture
–	 The details of the fully-connected classif ier

In our applications, we use BERTbase, primarily because of computational
constraints. We select the training epochs from {3, 4} , the learning rate from
{2 × 10-5, 3 × 10-5, 5 × 10-5}, and the batch size from {16, 32}. The limited ranges
of hyperparameters make grid searches feasible. These are the same values
suggested in Devlin et al., 2019. We use the cosine learning rate schedule

Figure 15 The VirTex pretraining setup, as described in Desai and Johnson, 2021. This
figure is taken directly from Desai and Johnson, 2021.

314 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

(Huang et al., 2017). We f ind that using 3 image captions generally work well,
with more captions typically worsening performance. Using the weighted
Adam optimizer (Kingma & Ba, 2014), as suggested in Devlin et al., 2019,
generally works well.

Whether we freeze certain parts of the architecture depends on the
application and grid search feasibility. W. Wang et al., 2019 notes that part
of the diff iculty of training multimodal models is that the image and text
features are learned by the model at different rates. One strategy to alleviate
this issue is to freeze and unfreeze certain parts of the model at different
stages of training (Kiela et al., 2019). When a part of the model is frozen,
the parameters are not updated after the backwards pass. In the f irst few
iterations, both the transformer decoder of modality translation and the
pretrained language model are frozen, allowing the model to only have
the ability to update the weights of the 1 × 1 convolution over the image
features and the pretrained image network. Then, the transformer decoder
of modality translation is unfrozen but the pretrained language model
remains frozen. Lastly, the pretrained model is unfrozen and the model is
trained end-to-end.

Finetuning is also quite sensitive to the learning rate schedule, which is
how the learning rate changes as training progresses. We design a three-stage
learning rate scheduler when freezing certain parts of the architecture. The
f irst 10% of the total training iterations are dedicated to a warmup period,
where the learning rate rises from 0 to the initial set learning rate in a linear
fashion. Then for the epochs where the transformer decoder of modality
translation or pretrained language model are frozen the learning rate is f ixed
at the initial set learning rate. When f inetuning of the entire model occurs
after the pretrained language model is unfrozen, the learning rate decreases
following the values of a cosine function between the initial set learning
rate to zero. Freezing the transformer decoder of modality translation for
2 epochs and the pretrained language model for 4 epochs generally worked
well, and experimentation showed that more epochs where either parts
were frozen did not yield improvements in performance.

The model is implemented in Python using PyTorch and HuggingFace’s
transformers library (Wolf et al., 2019).

Application 1: Definitions of Subcategories
The sub-bullet points indicate the subcategories that belong to a given
category. More detailed definitions for each category can be found in Mebane
et al., 2018.
–	 Line length, waiting time, polling place overcrowding

WU & MEBANE� 315

MARMOT

–	 There was no crowd or line at the polling place
–	 There was a small crowd, short line, or wait
–	 The polling place was crowded or there was a long line or wait (20

minutes or longer)
–	 Polling place event

–	 The polling place did not function as expected or information is
incorrect

–	 The tweet describes the polling place without noting whether it or
an aspect functioned correctly or incorrectly

–	 The polling place did function correctly or information is correct
–	 Electoral system

–	 The electoral system did not function appropriately
–	 The tweet makes a neutral statement about the electoral system

without an indication of if it functioned appropriately
–	 Absentee, mail-in, or provisional ballot issue

–	 The absentee, mail-in, or provisional ballot system did not function
appropriately

–	 The tweet makes a neutral observation or statement about the
absentee, mail-in, or provisional ballot system without noting it
having functioned correctly or incorrectly

–	 The absentee, mail-in, or provisional ballot system functioned
properly

–	 Registration
–	 The tweet indicates that an individual was not able to register to vote
–	 The tweet makes a neutral observation about the voter registration

process without noting if the individual in question registered or not
–	 The tweet notes that the individual was able to vote

Application 1: Hyperparameters
To create a validation dataset, we randomly held out 20% of the training
set for each category and subcategory. We used a grid search to f ind the
learning rate and the number of training epochs that optimized the F1
score over the class. We did not grid search over the batch size because
of computational constaints. Table 5 details the hyperparameters for the
categories and subcategories.

We used BERTbase. We did not freeze any parts of MARMOT. We used
weighted Adam (Kingma & Ba, 2014) with a cosine learning schedule. We
did not use gradient clipping. The ε, β1, and β2 for Adam are set to 1 × 10−8, 0.
9, and 0. 98 respectively, following the parameters set by Kiela et al., 2020.

316 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

Application 2: Hyperparameters
Hyperparameters were selected using the dev set provided by the Hateful
Memes dataset (Kiela et al., 2020). We used a grid search to f ind the batch
size, learning rate, and number of training epochs that optimized area
under the receiver operating characteristic curve (AUC) over the dev set.
The hyperparameters selected were: batch size of 32, learning rate of 5 ×
10−5, and 8 training epochs. We used BERTbase.

The parameters of both the transformer decoder of modality transla-
tion and the pretrained language model were frozen for 2 epochs, and the
parameters of just the pretrained language model were frozen for 2 more
epochs after. After the 4th epoch, the entire model is f inetuned end to end.
We used weighted Adam (Kingma & Ba, 2014) with the learning rate schedule
detailed in the Supplemental Information. We did not use gradient clipping.
The ε , β 1, and β 2 for Adam are set to 1 × 10-8, 0. 9, and 0. 98 respectively,
following the parameters set by Kiela et al., 2020.

Table 5 The selected hyperparameters for each category and subcategory for the

tweets about election incidents during the 2016 U.S. general election.

Category Batch Size Learning Rate Epochs

Not an Incident 16 5 × 10-5 4
Line Length 16 2 × 10− 5 4
(a) No crowd 16 3 × 10−5 4
(b) Small crowd 16 3 × 10−5 4
(c) Large crowd 16 5 × 10−5 4
Polling Place Event 16 3 × 10−5 4
(a) Did not function as expected 16 2 × 10−5 4
(b) Neutral observation 16 5 × 10−5 4
(c) Functioned properly 16 2 × 10−5 3
Electoral System 16 3 × 10−5 4
(a) Did not function properly 16 3 × 10−5 3
(b) No comment on function 16 2 × 10−5 4
Absentee or Early Voting Issue 16 5 × 10−5 4
(a) Did not function properly 16 5 × 10−5 4
(b) Neutral observation 16 5 × 10−5 4
(c) Functioned properly 16 5 × 10−5 4
Registration 16 2 × 10−5 4
(a) Not able to register 16 2 × 10−5 4
(b) Neutral observation 16 5 × 10−5 4
(c) Able to register 16 3 × 10−5 4

WU & MEBANE� 317

MARMOT

Application 2: Accuracy Learning Curve During Training over the
Hateful Memes Dataset
To assess whether MARMOT overfits the training data, we plot the accuracy
learning curve of the validation set during training. Figure 16 shows that the
curve monotonically increases during training. Because the parameters of
both the transformer decoder of modality translation and the pretrained
language model were frozen for 2 epochs and the parameters of just the
pretrained language model was frozen for 2 more epochs after, the accuracy
does not increase in the f irst four epochs of training.

Application 2: Results Over the Validation Set of the Hateful Memes
Dataset
Table 6 contains the accuracy and area under the receiver operating char-
acteristic curve (AUC) performance metrics across the 11 baseline models
and MARMOT over the validation dataset. Results for the 11 baseline models
come from Kiela et al., 2020. It is important to note that hyperparameters
were optimized using the validation dataset. The results are largely in line
with the results over the test set.

Figure 16 Accuracy learning curve of the validation set during training over the Hateful
Memes dataset.

318 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

Notes

1.	 For example, training and inference can be complete using Google Colab, a
free resource that offers the use of one GPU.

2.	 See the Supplemental Information for more details about SCST.
3.	 For more information about this challenge, see https://ai.facebook.com/

blog/hateful-memes-challenge-and-data-set/.
4.	 The noted existence of these meme category types was a significant issue

during the Hateful Memes challenge. Some contestants designed architec-
tures to predict the category of each meme in the dataset. These category-
specific architectures led to extraordinary performances that far exceeded
human coder baselines. As these category types would not exist in any
real-life setting involving memes, our approach does not attempt to infer
the category types of each meme as part of the prediction pipeline.

5.	 Intuitively, AUC is the probability that a classifier will rank a randomly cho-
sen positive example over a randomly chosen negative example. For a more
detailed set of definitions of the performance metrics, refer to the section
on evaluation metrics in the Supplemental Information.

6.	 Placement in the challenge was based on AUC.
7.	 Specifically, the probability of each meme being hateful, using MARMOT, is

0.929, 0.0008, and 0.013, respectively.
8.	 Because of computational constraints, these visualizations could not be

created for tweets of election incidents during the 2016 U.S. general elec-
tion.

Table 6 Accuracy and area under the receiver operating characteristic curve

(AUC) performance metrics across the 11 baseline models and MARMOT over the

validation set of the Hateful Memes dataset.

Model Accuracy AUC

Image - Grid 0.5273 0.5879
Image - Region 0.5266 0.5798
Text BERT 0.5826 0.6465
Late Fusion 0.6153 0.6597
Concat BERT 0.5860 0.6525
MMBT - Grid 0.5820 0.6857
MMBT - Region 0.5873 0.7173
ViLBERT 0.6220 0.7113
VisualBERT 0.6210 0.7060
ViLBERT CC 0.6140 0.7060
VisualBERT COCO 0.6506 0.7397
MARMOT 0.6580 0.7587

WU & MEBANE� 319

MARMOT

9.	 Self-critical sequence training misidentifies the animal in the picture as a
cow.

10.	 Specifically, the probability of each meme being hateful, using MARMOT, is
0.987 and 0.225, respectively.

References

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv: 1607.06450
[stat.ML].

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv: 1409.0473 [cs.CL].

Barberá, P., Casas, A., Nagler, J., Egan, P. J., Bonneau, R., Jost, J. T., & Tucker, J. A.
(2019). Who leads? who follows? measuring issue attention and agenda setting
by legislators and the mass public using social media data. American Political
Science Review, 113(4), 883–901. https://doi.org/10.1017/s0003055419000352

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of
Machine Learning Research, 3, 993–1022.

Bloem, P. (2019). Transformers from scratch. http://www.peterbloem.nl/blog/
transformers

Casas, A., & Webb Williams, N. (2019). Images that matter: Online protests and the
mobilizing role of pictures. Political Research Quarterly, 72(2), 360–375. https://
doi.org/10.1177/1065912918786805

Chang, C., & Masterson, M. (2020). Using word order in political text classif ication
with long short-term memory models. Political Analysis, 28(3), 395–411. https://
doi.org/10.1017/pan.2019.46

Chilamkurthy, S. (2017). Transfer learning for computer vision tutorial. https://
pytorch.org/tutorials/beginner/transfer_learning_tutorial.html#transfer-
learning-for-computer-vision-tutorial

Davidson, T., Warmsley, D., Macy, M., & Weber, I. (2017). Automated hate speech
detection and the problem of offensive language. arXiv: 1703.04009 [cs.CL].

Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, & Li Fei-Fei. (2009). Imagenet: A
large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision
and Pattern Recognition, 248–255. https://doi.org/10.1109/CVPR.2009.5206848

Desai, K., & Johnson, J. (2021). Virtex: Learning visual representations from textual
annotations. arXiv: 2006.06666 [cs.CV].

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv: 1810.04805 [cs.CL].

Fong, C., & Tyler, M. (2020). Machine learning predictions as regression covariates.
Political Analysis, 1–18. https://doi.org/10.1017/pan.2020.38

320 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

Hastie, T., Tibshirani, R., & Friedman, J. (2000). Elements of statistical learning:
Data mining, inference, and prediction. Springer.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition.
arXiv: 1512.03385 [cs.CV].

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computa-
tion, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., & Weinberger, K. Q. (2017). Snapshot
ensembles: Train 1, get m for free. arXiv: 1704.00109 [cs.LG].

Kiela, D., Bhooshan, S., Firooz, H., & Testuggine, D. (2019). Supervised multimodal
bitransformers for classifying images and text. arXiv: 1909.02950 [cs.CL].

Kiela, D., Firooz, H., Mohan, A., Goswami, V., Singh, A., Ringshia, P., & Testuggine,
D. (2020). The hateful memes challenge: Detecting hate speech in multimodal
memes. arXiv: 2005.04790 [cs.AI].

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv:
1412.6980 [cs.LG].

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predic-
tive uncertainty estimation using deep ensembles. arXiv: 1612.01474 [stat.ML].

Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents.
Proceedings of the 31st International Conference on International Conference on Ma-
chine Learning - Volume 32, II-1188–II-1196. https://doi.org/10.5555/3044805.3045025

Li, L. H., Yatskar, M., Yin, D., Hsieh, C.-J., & Chang, K.-W. (2019). Visualbert: A simple
and performant baseline for vision and language. arXiv: 1908.03557 [cs.CV].

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P.,
Ramanan, D., Zitnick, C. L., & Dollár, P. (2014). Microsoft coco: Common objects
in context. arXiv: 1405.0312 [cs.CV].

Liu, K., Li, Y., Xu, N., & Natarajan, P. (2018). Learn to combine modalities in multimodal
deep learning. arXiv: 1805.11730 [stat.ML].

Lu, J., Batra, D., Parikh, D., & Lee, S. (2019). Vilbert: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks. arXiv: 1908.02265 [cs.CV].

MacAvaney, S., Yao, H.-R., Yang, E., Russell, K., Goharian, N., & Frieder, O. (2019).
Hate speech detection: Challenges and solutions. PLOS ONE, 14(8), 1–16. https://
doi.org/10.1371/journal.pone.0221152

Mebane, W. R., Jr., Wu, P. Y., Woods, L., Klaver, J., Pineda, A., & Miller, B. (2018).
Observing election incidents in the united states via twitter: Does who observes
matter? [Working Paper]. http://websites.umich.edu/~wmebane/mw18B.pdf

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Proceedings
of the 26th International Conference on Neural Information Processing Systems
- Volume 2, 3111–3119. https://doi.org/10.5555/2999792.2999959

WU & MEBANE� 321

MARMOT

Mogadala, A. (2015). Polylingual multimodal learning. ECML PKDD Doctoral
Consortium. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.722.4
854&rep=rep1&type=pdf

Pan, J., & Siegel, A. A. (2020). How Saudi crackdowns fail to silence online dissent. Ameri-
can Political Science Review, 114(1), 109–125. https://doi.org/10.1017/S0003055419000650

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowl-
edge and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word
representation. Empirical Methods in Natural Language Processing (EMNLP),
1532–1543. https://doi.org/10.3115/v1/d14-1162

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object
detection with region proposal networks. arXiv: 1506.01497 [cs.CV].

Rennie, S. J., Marcheret, E., Mroueh, Y., Ross, J., & Goel, V. (2016). Self-critical sequence
training for image captioning. arXiv: 1612.00563 [cs.LG].

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature , 323(6088), 533–536. https://doi.org/10.1038/323533a0

Rush, A. (2018). The annotated transformer. https://nlp.seas.harvard.edu/2018/04/03/
attention.html

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2:
Inverted residuals and linear bottlenecks. arXiv: 1801.04381 [cs.CV].

Sharma, P., Ding, N., Goodman, S., & Soricut, R. (2018). Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for automatic image captioning.
Proceedings of the 56th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), 2556–2565. https://doi.org/10.18653/v1/P18-1238

Siegel, A. A., & Badaan, V. (2020). #No2sectarianism: Experimental approaches to
reducing sectarian hate speech online. American Political Science Review, 114(3),
837–855. https://doi.org/10.1017/S0003055420000283

Siegel, A. A., Nikitin, E., Barberá, P., Sterling, J., Pullen, B., Bonneau, R., Nagler, J.,
& Tucker, J. A. (2021). Trumping hate on twitter? Online hate speech in the 2016
u.s. election campaign and its aftermath. Quarterly Journal of Political Science,
16(1), 71–104. https://doi.org/10.1561/100.00019045

Singh, A., Goswami, V., & Parikh, D. (2020). Are we pretraining it right? Digging
deeper into visio-linguistic pretraining. arXiv: 2004.08744 [cs.CV].

Su, W., Zhu, X., Cao, Y., Li, B., Lu, L., Wei, F., & Dai, J. (2019). Vl-bert: Pre-training of
generic visual-linguistic representations. arXiv: 1908.08530 [cs.CV].

Sun, C., Myers, A., Vondrick, C., Murphy, K., & Schmid, C. (2019). Videobert: A joint
model for video and language representation learning. arXiv: 1904.01766 [cs.CV].

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2015). Rethinking the
inception architecture for computer vision. arXiv: 1512.00567 [cs.CV].

322 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

Tan, H., & Bansal, M. (2019). Lxmert: Learning cross-modality encoder representations
from transformers. arXiv: 1908.07490 [cs.CL].

Terechshenko, Z., Linder, F., Padmakumar, V., Liu, M., Nagler, J., Tucker, J. A., &
Bonneau, R. (2021). A comparison of methods in political science text classification:
Transfer learning language models for politics [Working Paper].

Tian, L., Zheng, D., & Zhu, C. (2013). Image classif ication based on the combination
of text features and visual features. International Journal of Intelligent Systems,
28(3), 242–256. https://doi.org/10.1002/int.21567

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., & Polosukhin, I. (2017). Attention is all you need. arXiv: 1706.03762 [cs.CL].

Vig, J. (2019). A multiscale visualization of attention in the transformer model. arXiv:
1906.05714 [cs.HC].

Wang, S., McCormick, T. H., & Leek, J. T. (2020). Methods for correcting inference
based on outcomes predicted by machine learning. Proceedings of the National
Academy of Sciences, 117(48), 30266–30275. https://doi.org/10.1073/pnas.2001238117

Wang, W., Tran, D., & Feiszli, M. (2019). What makes training multi-modal clas-
sification networks hard? arXiv: 1905.12681 [cs.CV].

Webb Williams, N., Casas, A., & Wilkerson, J. D. (2020). Images as data for social
science research: An introduction to convolutional neural nets for image clas-
sification. Cambridge University Press. https://doi.org/10.1017/9781108860741

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault,
T., Louf, R., Funtowicz, M., & Brew, J. (2019). Huggingface’s transformers: State-
of-the-art natural language processing. arXiv: 1910.03771 [cs.CL].

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M.,
Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser,
Ł., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., … Dean, J. (2016). Google’s neural
machine translation system: Bridging the gap between human and machine
translation. arXiv: 1609.08144 [cs.CL].

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R., & Bengio,
Y. (2015). Show, attend and tell: Neural image caption generation with visual
attention. arXiv: 1502.03044 [cs.LG].

Zahavy, T., Magnani, A., Krishnan, A., & Mannor, S. (2016). Is a picture worth a
thousand words? A deep multi-modal fusion architecture for product classification
in e-commerce. arXiv: 1611.09534 [cs.CV].

Zhang, H., & Pan, J. (2019). CASM: A deep-learning approach for identifying col-
lective action events with text and image data from social media. Sociological
Methodology, 49(1), 1–57. https://doi.org//https://doi.org/10.1177/0081175019860244

