
180

Extracting semantic relations using syntax
An R package for querying and reshaping dependency trees.

Kasper Welbers 
VU University Amsterdam

Wouter van Atteveldt 
VU University Amsterdam

Jan Kleinnijenhuis 
VU University Amsterdam

Abstract
Most common methods for automatic text analysis in communication 
science ignore syntactic information, focusing on the occurrence and co-
occurrence of individual words, and sometimes n-grams. This is remarkably 
effective for some purposes, but poses a limitation for f ine-grained analyses 
into semantic relations such as who does what to whom and according to what 
source. One tested, effective method for moving beyond this bag-of-words 
assumption is to use a rule-based approach for labeling and extracting 
syntactic patterns in dependency trees. Although this method can be 
used for a variety of purposes, its application is hindered by the lack of 
dedicated and accessible tools. In this paper we introduce the rsyntax R 
package, which is designed to make working with dependency trees easier 
and more intuitive for R users, and provides a framework for combining 
multiple rules for reliably extracting useful semantic relations.

Introduction

Applications of automatic text analysis in social scientif ic research often 
rely on the bag-of-words assumption (Boumans & Trilling, 2016; Grimmer 
& Stewart, 2013). Texts are broken up into individual words, and hence 
represented only by their frequencies, regardless of the way in which these 
words are related to each other in syntax, or even word order and distance. 

COMPUTATIONAL COMMUNICATION RESEARCH 3.2 (2021) 180-194
https://doi.org/10.5117/CCR2021.2.003.WELB

This is an open access article distributed under the terms of the CC BY 4.0 license



WELBERS, VAN AT TEVELDT & KLEINNIJENHUIS� 181

EX TRAC TING SEMANTIC RELATIONS USING SYNTAX

This approach culls a substantial part of the information contained in a text, 
but has been proven to be very useful for a wide variety of text analysis tasks. 
From supervised machine learning techniques for measuring document or 
sentence level sentiment (Barberá, Boydstun, Linn, McMahon, & Nagler, 
2016), to unsupervised techniques for automatically classifying texts into 
topics (Roberts et al., 2014), the mere frequencies of individual words seem 
to contain suff icient information.

However, for certain types of analysis the syntactic relations between 
words are critical. If a text mentions two people and indicates a conflict, 
it would be rash to assume that the conflict involved these two people, let 
alone draw any conclusions regarding who initiated the conflict. Information 
pertaining to these semantic relations is encoded in syntax. This is also 
why state-of-the-art machine learning approaches for tasks such as opinion 
mining and machine translation rely on deep learning models that can take 
the relations between words into account (Goldberg, 2017; Nakov, Ritter, 
Rosenthal, Sebastiani, & Stoyanov, 2016).

In this paper we present the rsyntax R package, which facilitates a versatile 
and transparent method for using syntax in text analysis by making it easy 
to extract information from syntactic dependency trees. Dependency trees 
contain information about the syntax of a sentence in a graph representation, 
where every word is connected to another word with a certain syntactic 
relation. This formal representation of syntax makes it possible to perform a 
query search on syntactic patterns (Luotolahti, Kanerva, Pyysalo, & Ginter, 
2015; Shlain, Taub-Tabib, Sadde, & Goldberg, 2020), enabling a rule-based 
analysis. This type of analysis can be used, for instance, to extract product 
attributions from reviews (Poria, Cambria, Ku, Gui, & Gelbukh, 2014), biologi-
cal facts from scientif ic literature (Fundel, Küffner, & Zimmer, 2007), events 
data from news reports (Schrodt, 2015) or source-quote and subject-predicate 
clauses from conflict coverage (Van Atteveldt, 2008; Van Atteveldt, Sheafer, 
Shenhav, & Fogel-Dror, 2017).

In a way, this brings us full circle to early research in communication 
science that focused on extracting semantic relations (e.g. Lasswell & Leites, 
1965; Osgood, Saporta, & Nunnally, 1956; Van Cuilenburg, Kleinnijenhuis, & 
De Ridder, 1986). It also connects with current work that uses ‘core sentences 
’ or political claims as a unit of analysis rather than whole texts (Klein-
nijenhuis, van Hoof, & van Atteveldt, 2019; Koopmans & Statham, 1999; 
Wueest, Clematide, Bünzli, Laupper, & Frey, 2011).

There are existing systems for querying graph data, but using theses 
systems for extracting information from dependency trees requires a fairly 
high-level understanding of graph theory and coding (Shlain et al., 2020). 



182 � VOL. 3, NO. 2, 2021

COMPUTATIONAL COMMUNICATION RESEARCH

rsyntax is specialized for working with dependency trees in a way that is 
accessible and intuitive for anyone with a basic understanding of R and data 
frames. By focusing on a common type of dependency tree where each token 
(i.e. word) only has a single parent, the complete syntactic information can 
be represented as columns in a data frame where each row is a word. In this 
format, querying syntactic patterns can be understood as a special form of 
selecting rows. Using visualization tools and a specialized system for query-
ing and transforming dependency trees, users can extract useful semantic 
relations, and add this information to the data frame for further analysis.

Extracting semantic relations from texts

The general purpose of rsyntax is to provide a flexible system for labeling and 
extracting any type of syntactic pattern. But as a tool developed primarily 
for communication scientists, it is specialized for the extraction of semantic 
relations such as who says what and who does what. This application of rsyntax 
can be seen as a “specialized and simplified version of Semantic Role Labeling 
(SRL)” (Van Atteveldt et al., 2017). Labels are assigned to words to indicate their 
semantic role in a sentence, for example that John is the agent in the sentence 
“the window was broken by John” (Jurafsky & James, 2020). This enables us 
to refine frequency-based text analysis by focusing on specific components, 
such as things said or done by or to certain people or organizations.

The field of Semantic Role Labeling (SRL) is still in very active development 
(see e.g., He, Lee, Lewis, & Zettlemoyer, 2017; Zhou & Xu, 2015). Even though 
performance is rapidly increasing, accuracy remains limited, especially out-
side of the English language. This is partly due to the ambitious scope of most 
state-of-the-art semantic role parsers, which are developed to distinguish 
many (ideally all) possible semantic roles. For applications in communication 
science, this level of detail is often not needed. An effective alternative is 
therefore to extract only the semantic relations that a researcher is interested 
in by labeling and transforming syntactic dependency trees (Van Atteveldt, 
2008; Van Atteveldt, Sheafer, Shenhav, & Fogel-Dror, 2017).

State-of-the-art syntactic dependency parsers are widely available, and 
some can also be used directly from within R. With rsyntax the researcher 
can develop custom rules to give any label to any syntactic pattern, which 
makes the process very f lexible and transparent. The limitation of this 
approach is that semantic relations can often be expressed with many 
different syntactic patterns, and writing rules for all variations in a corpus 
by hand is not always feasible. Yet, prior studies show that only a few rules 



WELBERS, VAN AT TEVELDT & KLEINNIJENHUIS� 183

EX TRAC TING SEMANTIC RELATIONS USING SYNTAX

are often required to capture the most dominant types of expression (see 
e.g., Author, 2017; Fundel et al., 2007; Poria et al., 2014).

Working with syntactic dependency trees

The method and tool discussed in this paper require that texts have f irst 
been preprocessed with a natural language processing (NLP) pipeline that 
includes a dependency parser. There are several packages in R that support 
dependency parsing, such as spacyr (Benoit & Matsuo, 2017; Honnibal & 
Johnson, 2015), and udpipe (Straka & Straková, 2017; Wijffels, 2019). Working 
with rsyntax requires a basic understanding of the data produced by these 
pipelines, and of dependency-based grammar in particular (for an excellent 
introduction, see chapter 15 of Jurafsky and James 2020).

Table 1 shows the output of the spaCy pipeline for the sentence “Trump 
said that Biden is the dumbest of all candidates” in a data frame format. 
Each row represents a unique token (i.e. word or punctuation), and the 
columns contain information from several text preprocessing techniques. 
The lemma (lemmatization) and pos (part-of-speech tagging) columns are 
relatively straightforward to use because they contain information about 
individual tokens. The dependency tree information, which is represented 
in the parent and relation columns, is more complicated to use because it 
contains information about the relations between tokens. To work with 
this data, we need to understand the general properties of this graph (i.e. 
network) data, and how it is represented in the data frame.

A dependency tree is a set of labeled dependency relations between the 
tokens of a sentence (Kübler, McDonald, & Nivre, 2009, 12), that is represented 
as a directed acyclic graph (see e.g., Chen & Manning, 2014; Manning et al., 
2014). Since each token in the tree can only have a single parent, it is possible 
to represent the complete graph in the tokens data frame. The number in the 
parent column refers to the token_id of the parent, and the relation column 
indicates the type of dependency relation. For example, for the “Trump” token 
the parent value is 2, which indicates that “said” is the parent. The relation is 
nsubj, which indicates that “Trump” is the nominal subject of the verb “said”. 
From this information we can infer that Trump is the one who said something.

Having data on these syntactic structures allows us to analyze texts based 
on general patterns in how people say something rather than what they say 
specif ically. People can be very creative in stringing words together, but 
sentences do need to adhere to certain syntactic structures in order to make 
sense. Instead of “Trump said that Biden is the dumbest candidate”, one could 



184 � VOL. 3, NO. 2, 2021

COMPUTATIONAL COMMUNICATION RESEARCH

also have said “Biden is the dumbest candidate, says Trump”, or even “The 
‘dumbest candidate ’, Trump was saying, ‘is Biden ’ ”. Despite differences 
in word order, the subject-verb structure of these sentences can be used to 
determine who-said-what. Moreover, the syntactic structure can be the same 
even if the specific words change, for instance in “Biden said that Trump is the 
worst president”. Therefore, by developing queries for a few common syntactic 
patterns, we can extract information from a huge variety of specific sentences.

The rsyntax package facilitates this methodological approach in three 
ways. First, dependency trees can be visualized in a way that makes it easier 
to see and compare the syntactic structures of sentences. Second, a versatile 
system for creating, combining and applying queries for syntactic patterns 
is provided. Third, for more advanced applications, tools are provided for 
transforming sentence structures (Harris, 1957), which can help dealing 
with subordinate clauses (i.e. nested sentences).

Visualizing dependency trees
To make working with dependency data easier rsyntax can visualize token 
data in a way that conveys both the data frame structure and the dependency 
tree. The following code produces Figure 1 based on output from the spaCy 
pipeline.

library(spacyr)

library(rsyntax)

tokens = spacy_parse("Trump said that Biden is the dumbest of 

all candidates", dependency=T)

plot_tree(tokens)

Table 1 Output of the spaCy parser

sentence token_id token lemma pos parent relation

1 1 Trump trump PROPN 2 nsubj
1 2 said say VERB ROOT
1 3 that that ADP 5 mark
1 4 Biden Biden PROPN 5 nsubj
1 5 is be VERB 2 ccomp
1 6 the the DET 7 det
1 7 dumbest dumb ADJ 5 attr
1 8 of of ADP 7 prep
1 9 all all DET 10 det
1 10 candidates candidate NOUN 8 pobj



WELBERS, VAN AT TEVELDT & KLEINNIJENHUIS� 185

EX TRAC TING SEMANTIC RELATIONS USING SYNTAX

The words of the sentence are presented horizontally at the bottom, option-
ally with other columns such as the lemma and pos printed below them. 
The tree illustrates the syntactic relations between these tokens. The nodes 
of the graph contain the token_id, and the edges indicate the dependency 
relations between tokens. The higher node is the parent token, and the 
lower node is the child token. The type of relation is printed above the 
child node in italics.

1

2

3 4

5

6

7

8

9

10

nsubj

ROOT

mark nsubj

ccomp

det

attr

prep

det

pobj

Trump
trump

PROPN

said
say

VERB

that
that
ADP

Biden
Biden

PROPN

is
be

VERB

the
the

DET

dumbest
dumb
ADJ

of
of

ADP

all
all

DET

candidates
candidate

NOUN

Figure 1 Dependency tree for “Trump said that Biden is the dumbest of all candidates”

This visualization contains a lot of information, but once familiarized it 
makes it much easier to detect patterns in syntactic structure. We can see 
in one glance that “Trump” is the nominal subject (nsubj) of the verb “said”. 
We can also see longer and more complicated patterns, such as the fact that 
the rest of the sentence is directly or indirectly a child of “said”. Being able 
to quickly see the dependency tree for a given sentence is a great help in 
developing and testing queries. Using example sentences to determine what 
common patterns to look for also makes the method more approachable 
for users without advanced linguistic knowledge.

Querying dependency trees
The core functionality of rsyntax is the system for querying syntactic 
patterns. Here we briefly discuss the general design. As an example case, 
consider that we would want to compare statements made by Trump and 
Biden in the news. To do this, we need to query syntactic patterns that 
indicate that someone is the source of a statement.

Developing a query. Queries in rsyntax need to account for two things: 
the selection of tokens and the relations between these tokens. For extracting 
statements made by Trump and Biden, a good place to start is to f ind verbs 
that indicate speech. The following code creates a tquery (tree query) for 
f inding all tokens with the part-of-speech (pos) tag “VERB” and a lemma 
that indicates speech.



186 � VOL. 3, NO. 2, 2021

COMPUTATIONAL COMMUNICATION RESEARCH

speech_verbs = c("say", "state") ## etc.

source_said = tquery(pos = "VERB", lemma = speech_verbs)

In Table 1, this query would match the token “said”. To go from this single 
token to a pattern of tokens, we add conditions for its parent or children. In 
the following code we say that the verb needs to have a child with a “nsubj” 
relation. This is achieved by nesting the children function within the tquery.

source_said = tquery(pos = "VERB", lemma = speech_verbs,

    children(relation = "nsubj"))

Notice how the children function itself only specif ies selection criteria for 
rows from the tokens data frame. By applying these selection criteria to the 
children of another selection, which can also be within another children 
function, any tree shaped pattern can be created. Thus, querying a pattern 
in a dependency tree can be understood as nested row selection operations, 
and does not require learning a full graph querying language.

The next step in our example is to also add the quote or paraphrase to 
the pattern. A rough but effective approach is to take all remaining children 
of the verb, which we can do by adding a second children function without 
any conditions. In addition, we are now going to add labels to the query. 
This way, we will not only look whether a source-verb-quote pattern exists, 
but also distinguish these three components.

source_said = tquery(label = "quote", pos = "VERB", lemma = 

speech_verbs,

    children(label = "source", relation = "nsubj"),

    children(label = "quote"))

In summary, we now have a query that matches (1) a verb that indicates 
speech, that has (2) a child with a subject relation and (3) other children. 
These components are labeled “verb”, “source” and “quote”, respectively. 
We can now use this query to annotate the tokens data, using the ‘an-
notate_tqueries()‘ function.

tokens = annotate_tqueries(tokens, "verb", source_said)

To verify that the query works as intended, the annotations can also be 
added to the tree visualization.



WELBERS, VAN AT TEVELDT & KLEINNIJENHUIS� 187

EX TRAC TING SEMANTIC RELATIONS USING SYNTAX

plot_tree(tokens, annotation="quote")

Figure 2 shows this visualization for a new example sentence. The outer box 
indicates which tokens are part of the pattern, and the inner boxes indicate 
the labels assigned to the pattern components. The speech indicating verb of 
this sentence is “said”. The subject of this verb is “Biden”, and the remaining 
children are “cloaked” and the comma. Our query matches these tokens, and 
assigns labels to indicate that “Joe Biden” (source) is the one who “said” (verb) 
that “Trump has ‘cloaked America in darkness for much too long ’,” (quote).

1 2 3

4

5 6

7

8

9 10

11

12

13

14

15

16

nsubj aux punct

ccomp

dobj prep

pobj

prep

advmod advmod

pobj

punct

punct

compound

nsubj

ROOT

Trump
trump
NOUN

has
have

VERB

"
"

PUNCT

cloaked
cloak
VERB

America
America
PROPN

in
in

ADP

darkness
darkness

NOUN

for
for

ADP

much
much
ADV

too
too

ADV

long
long
ADJ

"
"

PUNCT

,
,

PUNCT

Joe
Joe

PROPN

Biden
Biden

PROPN

said
say

VERB

quote source

verb

tq#text1.1.16

Figure 2 Dependency tree with annotations for source, verb and quote.

Notice that the entire sentence is labelled, even though the query only 
matched four tokens (Biden, said, cloaked, and the comma). This is because 
of a special functionality for recursively annotating children of a matched 
token with the same semantic role label, which we call the fill heuristic. 
The default behavior of this heuristic often makes sense because a child in 
a dependency tree contains information related to the parent. However, 
labelling all children is sometimes too crude. For better precision it is 
therefore possible and recommended to customize the f ill heuristic. For 
instance, we can make a special f ill heuristic for subjects that only labels 
compound relations (like “Joe” in “Joe Biden”) or that stops when it reaches 
a subordinate clause.

Here we only demonstrated a relatively simple query to illustrate the 
gist of the method. The purpose of the tquery function is that any pattern 
can be matched, and more features such as the f ill heuristic are provided 
to make it easier to match useful patterns. An ongoing development goal 
is to make this as easy and flexible as possible, building on user feedback 
from the community.



188 � VOL. 3, NO. 2, 2021

COMPUTATIONAL COMMUNICATION RESEARCH

Chaining multiple queries. Our example query captures a common 
syntactic structure for indicating sources, but for better recall on our task 
of f inding statements from Trump and Biden, we will need to add queries 
for common alternatives. For example, Figure 3 shows the dependency tree 
of a sentence where the source is indicated with “according to”. This is a 
rather common pattern, but to match it we need a slightly more complicated 
query that contains several nested children.

according_to_source = tquery(label = "quote", pos = "VERB",

    children(label = "verb", lemma="accord",

        children(lemma = "to",

            children(label = "source"))))

To obtain good accuracy we need to at least develop queries for the most 
common syntactic structures within a given use case (e.g., quotes from 
politicians in news) but any number of queries can be used to improve 
accuracy. An important functionality of rsyntax is the possibility to combine 
multiple queries in a chain.

1 2 3

4

5 6 7

8

9

10

11 12 13 14

15

16

17

18

19

mark nsubj aux

advcl

advmod punct advmod

prep

prep

pobj

punct nsubj aux aux

ROOT

dobj

prep

pobj

punct

If
if

ADP

Trump
Trump

PROPN

had
have

VERB

acted
act

VERB

earlier
earlier
ADV

,
,

PUNCT

then
then
ADV

according
accord
VERB

to
to

ADP

Biden
Biden

PROPN

,
,

PUNCT

he
−PRON−

PRON

would
would
VERB

have
have

VERB

saved
save

VERB

thousands
thousand

NOUN

of
of

ADP

lives
life

NOUN

.

.
PUNCT

quote verb

source

quote

acc#text1.1.8

Figure 3 Dependency tree for “If Trump had acted earlier, then according to Biden, he 
would have saved thousands of lives.”

chain = list(source_said, according_to_source)

tokens = annotate_tqueries(tokens, "quote", chain)

All results are then combined, and certain priority rules are applied so that 
tokens can only be annotated once. Most importantly, queries earlier in 
the chain are given priority, which can be used to systematically improve 
accuracy. New queries can be added to the end of the chain to improve 
recall without intervening with prior queries. If there are patterns that are 



WELBERS, VAN AT TEVELDT & KLEINNIJENHUIS� 189

EX TRAC TING SEMANTIC RELATIONS USING SYNTAX

incorrectly matched, a more specif ic query can be placed in front of the 
responsible query to improve precision.

Comparing statements from Trump and Biden. After developing and 
validating a chain of queries for extracting source-verb-quote relations, we 
can return to our hypothetical task of comparing statements from Trump 
and Biden. By applying the queries on the tokens data frame, two columns 
are added: one specifying the unique id of the pattern and one specifying 
the label (Table 2).

Table 2 Tokens data frame after applying tqueries (abbreviated).

sent token_id token lemma pos parent relation pattern_id pattern

1 1 Trump trump PROPN 2 nsubj dir#1.1.2 source
1 2 said say VERB ROOT dir#1.1.2 verb
1 3 that that ADP 5 mark
1 4 Biden Biden PROPN 5 nsubj dir#1.1.2 quote
1 5 is be VERB 2 ccomp dir#1.1.2 quote
… … … … … … … … …

We can now select the patterns for which Trump or Biden was the source, 
and use the quote tokens to create separate corpora or document-term 
matrices containing only the words from their statements. We can then use 
any (bag-of-words type) text analysis technique to analyze and compare 
statements from Biden and Trump.

Reshaping dependency trees
A complication for querying dependency trees is that sentences often 
contain implicit relations. For example, the sentence “Jebediah reformed 
the economy and balanced the budget” (Figure 4) contains two semantic 
relations: “Jebediah reformed the economy” and “Jebediah balanced the 
budget”. For the second relation the subject (Jebediah) is redundant by 
convention, and therefore not repeated. In the dependency tree this implicit 
subject relation is also not included. This means that a query that looks for 
a verb with a direct subject relation would not f ind the relation between 
“Jebediah” and “balanced”.

It is possible to write additional queries to extract these implicit relations. 
Also, for broadly extracting text of things done by Jebediah, the f ill heuristic 
(in combination with design details not discussed here) also provides an 
easy solution with decent accuracy. However, a more powerful solution 
would be to f irst reshape the dependency trees so that implicit relations 



190 � VOL. 3, NO. 2, 2021

COMPUTATIONAL COMMUNICATION RESEARCH

become explicit. The Universal Dependencies framework has an enhanced 
representation that “aims to make implicit relations between content words 
more explicit by adding relations and augmenting relation names” (Schuster 
& Manning, 2016, 2372). The implicit subject relation between “Jebediah” 
and “balanced” is then made explicit by adding an additional nsubj relation 
from “balanced” to “Jebediah”.

A consequence of this solution is that it violates the single parent property. 
This means that the enhanced dependency tree cannot be represented as a 
data frame (without having nested values). To include implicit relations, the 
implicit tokens would also have to be copied. This type of transformation 
is very similar to text simplification, in which sentences are broken up into 
less complicated components. Text simplif ication can be performed by 
applying certain operations on the dependency tree (see e.g., Siddharthan & 
Mandya, 2014). The rsyntax package therefore includes tools for performing 
these types of operations.

An example is given in Figure 5, where the example sentence is split into 
two sentences by resolving the conjunction. The visualization function in 
rsyntax automatically plots the now disconnected trees side-by-side, with 
the copied words colored red. To demonstrate how this makes it easier to 
query the dependency tree, we applied a simple query for subject-verb-object 
relations.

1

2

3

4 1.1

6

7

8
nsubj

ROOT

det

dobj nsubj

ROOT

det

dobj

Jebediah
Jebediah
PROPN
GPE_B

reformed
reform
VERB

the
the

DET

economy
economy
NOUN

Jebediah
Jebediah
PROPN
GPE_B

balanced
balance
VERB

the
the

DET

budget
budget
NOUN

subject

verb

object

active#text1.1.2

subject

verb

object

active#text1.1.6

Figure 5 Dependency graph after resolving conjunctions and annotating subject-verb-
object patterns.

1

2

3

4 5 6

7

8

nsubj

ROOT

det

dobj cc conj

det

dobj

Jebediah
Jebediah
PROPN
GPE_B

reformed
reform
VERB

the
the

DET

economy
economy
NOUN

and
and

CCONJ

balanced
balance
VERB

the
the

DET

budget
budget
NOUN

Figure 4 Dependency graph for the sentence "Jebediah reformed the economy and 
balanced the budget.".



WELBERS, VAN AT TEVELDT & KLEINNIJENHUIS� 191

EX TRAC TING SEMANTIC RELATIONS USING SYNTAX

Conclusion

In this paper we introduced the rsyntax R package, as a flexible and relatively 
accessible tool for using syntactic information in computational text analysis. 
It offers the core tools for working with syntactic dependencies in a graph 
format, but represented in a data frame format that communication scientists 
are more accustomed to working with.

The most interesting application for communication science is the extrac-
tion of semantic relations regarding who said or did what to whom, but 
there are limitations to what can be achieved with a rule-based approach. 
Language is extremely complex and constantly changing, making it practi-
cally impossible to develop rules for every possible way of saying something. 
A rule-based approach is therefore mainly useful for more specif ic types of 
relations (e.g., quotes from politicians, conflicts between known parties) in 
a not too diverse context (e.g., journalistic texts, parliamentary documents). 
As the task gets more complex or the language more diverse, machine 
learning approaches will often be more successful, under the condition 
that suff icient training data is available. If training data cannot be found 
or crafted, a rule-based approach might be the only feasible option, but it 
should be considered that for some tasks this has limited attainable accuracy.

More generally, the achievable accuracy of rsyntax depends on the 
performance of available dependency parsers. Good quality dependency 
parsers are not yet available for every language, and even good parser will not 
perform well if texts have strange of faulty spelling and grammar. Thankfully, 
open treebank data for many languages are actively being developed for the 
purpose of training more and better dependency parsers. Moreover, many of 
these treebanks use the Universal Dependencies annotation scheme, that is 
designed to be cross-lingually consistent (Nivre et al., 2016). Thus, the accuracy 
of rules developed in rsyntax is not only likely to increase, but rules developed 
for one language will to some extent be transferable to other languages. Aside 
from the core package that offers the tools, we will also provide a separate 
cookbook repository where we and other researchers can share rules.

In evaluating the merit of current techniques for working with syntax, 
we should not forget that our f irmly rooted reliance on the bag-of-words 
assumption was borne of necessity rather than merit. Even with current 
limitations, querying dependency trees enables us to use more of the 
information encoded in texts. With rsyntax we aim to make the use of 
this information more accessible, so that more researchers might explore 
how this can advance our f ield. The stable release version is hosted on the 
Comprehensive R Archive Network (CRAN), and the development version 



192 � VOL. 3, NO. 2, 2021

COMPUTATIONAL COMMUNICATION RESEARCH

is available on GitHub. The main API is stable, but the software will be 
maintained and currently remains in active development.

References

Barberá, P., Boydstun, A., Linn, S., McMahon, R., & Nagler, J. (2016). Methodological 
challenges in estimating tone: Application to news coverage of the us economy. 
In Meeting of the midwest political science association, chicago, il..

Benoit, K., & Matsuo, A. (2017). spacyr: R wrapper to the spacy nlp library [Computer 
software manual]. Retrieved from https://CRAN.R-project.org/package=spacyr 
(R package version 0.9.0).

Boumans, J. W., & Trilling, D. (2016). Taking stock of the toolkit: An overview of 
relevant automated content analysis approaches and techniques for digital 
journalism scholars. Digital Journalism, 4 (1), 8–23.

Chen, D., & Manning, C. (2014). A fast and accurate dependency parser using neural 
networks. In Proceedings of the 2014 conference on empirical methods in natural 
language processing (emnlp) (pp. 740–750).

Fundel, K., Küffner, R., & Zimmer, R. (2007). Relex—relation extraction using 
dependency parse trees. Bioinformatics, 23 (3), 365–371.

Goldberg, Y. (2017). Neural network methods for natural language processing. 
Synthesis Lectures on Human Language Technologies, 10 (1), 1–309.

Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of 
automatic content analysis methods for political texts. Political Analysis, 21 
(3), 267–297. doi: 10.1093/pan/mps028.

Harris, Z. S. (1957). Co-occurrence and transformation in linguistic structure. 
Language, 33 (3), 283–340.

He, L., Lee, K., Lewis, M., & Zettlemoyer, L. (2017). Deep semantic role labeling: What 
works and what ’s next. In Proceedings of the 55th annual meeting of the association 
for computational linguistics (volume 1: Long papers) (Vol. 1, pp. 473–483).

Honnibal, M., & Johnson, M. (2015, September). An improved non-monotonic 
transition system for dependency parsing. In Proceedings of the 2015 conference 
on empirical methods in natural language processing (pp. 1373–1378). Lisbon, 
Portugal: Association for Computational Linguistics. Retrieved from https://
aclweb.org/anthology/D/D15/D15-1162.

Jurafsky, D., & James, H. M. (2020). Speech and language processing. 3rd edn. draft. 
Online: https://web.stanford.edu/˜ jurafsky/slp3.

Kleinnijenhuis, J., van Hoof, A. M., & van Atteveldt, W. (2019). The combined effects 
of mass media and social media on political perceptions and preferences. Journal 
of Communication, 69 (6), 650–673.



WELBERS, VAN AT TEVELDT & KLEINNIJENHUIS� 193

EX TRAC TING SEMANTIC RELATIONS USING SYNTAX

Koopmans, R., & Statham, P. (1999). Political claims analysis: Integrating protest 
event and political discourse approaches. Mobilization: an international quarterly, 
4 (2), 203–221.

Kübler, S., McDonald, R., & Nivre, J. (2009). Dependency parsing. Synthesis Lectures 
on Human Language Technologies, 1 (1), 1–127.

Lasswell, H. D., & Leites, N. (1965). Language of politics: Studies in quantitative 
semantics (2nd ed.). Cambridge, MA: MIT Press.

Luotolahti, J., Kanerva, J., Pyysalo, S., & Ginter, F. (2015). Sets: Scalable and ef-
f icient tree search in dependency graphs. In Proceedings of the 2015 conference 
of the north american chapter of the association for computational linguistics: 
Demonstrations (pp. 51–55).

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014). 
The stanford corenlp natural language processing toolkit. In Proceedings of 
52nd annual meeting of the association for computational linguistics: system 
demonstrations (pp. 55–60).

Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., & Stoyanov, V. (2016). Semeval-2016 
task 4: Sentiment analysis in twitter. In Proceedings of the 10th international 
workshop on semantic evaluation (semeval-2016) (pp. 1–18).

Nivre, J., De Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajic, J., Manning, C. D., ... 
others (2016). Universal dependencies v1: A multilingual treebank collection. 
In Lrec.

Osgood, C. E., Saporta, S., & Nunnally, J. C. (1956). Evaluative assertion analysis. 
Litera.

Poria, S., Cambria, E., Ku, L.-W., Gui, C., & Gelbukh, A. (2014). A rule-based approach 
to aspect extraction from product reviews. In Proceedings of the second workshop 
on natural language processing for social media (socialnlp) (pp. 28–37).

Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S. K., 
... Rand, D. G. (2014). Structural topic models for open-ended survey responses. 
American Journal of Political Science, 58 (4), 1064–1082.

Schrodt, P. A. (2015). Comparing methods for generating large scale political event 
data sets. presented at the Text as Data meetings, New York University, 16-17 
October 2015.

Schuster, S., & Manning, C. D. (2016). Enhanced english universal dependencies: 
An improved representation for natural language understanding tasks. In 
Proceedings of the tenth international conference on language resources and 
evaluation (lrec ’16) (pp. 2371–2378).

Shlain, M., Taub-Tabib, H., Sadde, S., & Goldberg, Y. (2020). Syntactic search by 
example. arXiv preprint arXiv:2006.03010.

Siddharthan, A., & Mandya, A. A. (2014). Hybrid text.simplif ication using synchro-
nous dependency grammars with hand-written and automatically harvested 



194 � VOL. 3, NO. 2, 2021

COMPUTATIONAL COMMUNICATION RESEARCH

rules. In Proceedings of the 14th conference of the european chapter of the associa-
tion for computational linguistics (eacl 2014)..

Straka, M., & Straková, J. (2017, August). Tokenizing, pos tagging, lemmatizing and 
parsing ud 2.0 with udpipe. In Proceedings of the conll 2017 shared task: Multi-
lingual parsing from raw text to universal dependencies (pp. 88–99). Vancouver, 
Canada: Association for Computational Linguistics. Retrieved from http://www.
aclweb.org/anthology/K/K17/K17-3009.pdf.

Van Atteveldt, W. (2008). Semantic network analysis: Techniques for extracting, 
representing, and querying media content (dissertation). BookSurge.

Van Atteveldt, W., Sheafer, T., Shenhav, S. R., & Fogel-Dror, Y. (2017). Clause analy-
sis: using syntactic information to automatically extract source, subject, and 
predicate from texts with an application to the 2008–2009 gaza war. Political 
Analysis, 1–16.

Van Cuilenburg, J. J., Kleinnijenhuis, J., & De Ridder, J. A. (1986). A theory of evalu-
ative discourse: Towards a graph theory of journalistic texts. European Journal 
of Communication, 1 (1), 65–96.

Wijffels, J. (2019). udpipe: Tokenization, parts of speech tagging, lemmatization 
and dependency parsing with the ‘udpipe’ ‘nlp’ toolkit [Computer software 
manual]. Retrieved from https://CRAN.R-project.org/package=udpipe (R package 
version 0.8.3).

Wueest, B., Clematide, S., Bünzli, A., Laupper, D., & Frey, T. (2011). Electoral cam-
paigns and relation mining: Extracting semantic network data from newspaper 
articles. Journal of Information Technology & Politics, 8 (4), 444–463.

Zhou, J., & Xu, W. (2015). End-to-end learning of semantic role labeling using 
recurrent neural networks. In Proceedings of the 53rd annual meeting of the 
association for computational linguistics and the 7th international joint conference 
on natural language processing (volume 1: Long papers) (Vol. 1, pp. 1127–1137).

About the authors

Kasper Welbers, Department of Communication Science, Vrije Universiteit 
Amsterdam

Wouter van Atteveldt, Department of Communication Science, Vrije Uni-
versiteit Amsterdam

Jan Kleinnijenhuis, Department of Communication Science, Vrije Universiteit 
Amsterdam


